構造材料工学研究室 亀田 剛志

指導教員 吉川 弘道

1.はじめに

鉄筋コンクリート(以下 RC )部材のせん断破壊は ,脆性的な破壊であり,多大な 被害を生じさせる原因となるため ,様々な角度から研究が進められてきた.しかしな がらRC 部材のせん断破壊は ,多くの要因に影響を受ける複雑な現象であり,未解 明な点が多く残されている.その破壊形態を知る重要な情報の 1 つが ,せん断変 形である.一般的にせん断変形を求める方法として変位計を用いるが ,断面諸元 等の寸法によっては ,試験体に適用することができない.そこで ,CCD カメラを用い た非接触変位計測システムを使用し ,RC 梁の載荷実験におけるせん断変形の計 測を行った.

## 2. 実験概要

試験体配筋図を図-1 に,試験体諸元を表-1 に示す.供試体 は長さ1400mm,断面150×200mmの短形断面とした.片側の200 せん断スパンを意図的にせん断破壊させるため,左右せん断ス パンにおいてせん断補強筋比を変化させた.載荷方法は,せん 断スパン比をパラメータとし,2点載荷を変位制御で行った.測定 項目は,荷重,載荷点変位,各鉄筋のひずみ及びCCDカメラに よる変位測定の4項目である.





| 表-1   | 試験体諸元 |  |
|-------|-------|--|
| · • • |       |  |

| 試験体  | 断面形状      | 載荷スパ<br>ン(mm) | せん断<br>スパン | 有効高さ<br>(mm) | 曲げせん<br>断耐力比 | 軸方向鉄筋 |                      |                        | せん断補強筋 |                      |                              | コンクリート               |                        |
|------|-----------|---------------|------------|--------------|--------------|-------|----------------------|------------------------|--------|----------------------|------------------------------|----------------------|------------------------|
|      |           |               |            |              |              | 鉄筋比   | 降伏強度                 | 弾性係数                   | 鉄筋比    | 降伏強度                 | 弾性係数                         | 圧縮強度                 | 弾性係数                   |
|      |           |               |            |              |              | (%)   | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> )   | (%)    | (N/mm <sup>2</sup> ) | <b>(</b> N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> ) | (N/mm <sup>2</sup> )   |
| B550 |           |               | 550        |              | 1.126        |       |                      | _                      |        |                      | _                            |                      |                        |
| B475 | 200 × 150 | 1200          | 475        | 172.95       | 0.972        | 4.59  | 628                  | 2.94 × 10 <sup>5</sup> | 0.241  | 337                  | 1.86 × 10 <sup>⁵</sup>       | 33.2                 | 2.99 × 10 <sup>4</sup> |
| B400 |           |               | 400        |              | 0.819        |       |                      |                        |        |                      |                              |                      |                        |

3. 測定,解析方法

3 1 測定方法と画像処理方法

せん断破壊する側のせん断スパンを計測範囲とし,そこに,変位を測定するポインターとして,シール(直径 16mm) を縦 8cm 横 10cm の一定間隔で貼った(図 2 参照).この時,シールを認識しやすいように側面には白のペンキを塗 り,シールの色は検討の結果,濃紺とした.CCD カメラを計測範囲に合わせて固定し,シールが載荷中に変位する挙 動を 30 秒に 1 回の間隔で連続的に撮影した.画像の撮影解像度は,640 画素 × 480 画素である.この画像を,画像 解析ソフトWin ROOF を用いてカラー分離により3 つに分け,その1 つの画像を2 値化することによってポインターの みを抽出させ,その重心座標を測定し解析を行った.右下のポインターが支点の一部と同化してしまい読み取れなか ったため解析は,右隅の3 つのポインターを除いた範囲で行った.



図-2 載荷条件と解析範囲 (B475)

32 せん断変形,曲げ変形の算定方法

画像処理によって算出された各ポインターの座標から,下記の式(1),Q)を用い,せん断変形。shear,曲げ変形 flexを求めた (図-3 参照).  $\mathbf{L}$ 

(1)

 $_{\rm shear}$  = ds/ sinR ds = d - dh - dvdh=  $(lu + lb)/2 \cos R$ , dv =  $(hl + hr)/2 \sin R$  $\boldsymbol{d}_{flex} = \int_{\boldsymbol{f}} \boldsymbol{f}(x) x dx$ 

f(x) = (lu - ld)/(L h)

d:解析範囲の対角線方向変形量. dh, dv:解析範囲の水平,鉛直方向変形量 lu, lb 解析範囲の上辺,下辺変形量. hl, hr 解析範囲の右辺,左辺変形量 R:解析範囲の対角線角度.f(x):曲率.L:せん断スパン

## 4. 考察

全ての試験体において、設計どおりせん断補強筋比の小さいせ ん断スパンでせん断破壊した.しかし,画像を処理して求めた値は, ⊆15 全体的に乱れが生じてしまった.これは,画像処理する際の精度に よるものと考えられる.よって,以下の考察では,比較的安定したせ ん断変形が求められている試験体 B475,B400の結果を示した.

図-4(a), (b)に B475 とB400 における変位計から求めた変位 と,画像を処理して求めたせん断変形。shear,曲げ変形 flex及 び shear と flex をたした total の比を併記した.図-4 @ )を見ると, せん断ひび割れが発生した付近より shear が増えはじめ, flex とま ぼ同じ傾きで増加し,最大荷重後では shear と flex の差異が減少 した.最終的には, shear の方が上回っている.図-4 (b)の場合は, せん断ひび割れが発生した付近で shear が flex を上回り,最大荷 重後は shear の割合が急激に増加している.これらは,斜めひび割 れの発生と共にせん断挙動に移行したためだと考えられる.

また,図-4(a), (b)における shear と flex の違いは, せん断スパ ンの違いによるものであり, せん断スパンの小さい B400 の方が曲げ の比率が小さくなり, せん断が大きくなる.

次に, total と, の比較をすると, どちらの試験体においても, 2 つの値は少しの差異はあるものの,ほぼ同じ傾きで推移しているこ とがわかる.以上の考察から,非接触変位計測システムを用いた解 析により,変位計による実験値に近い変形量を算出することができ たと考えられる.

5.まとめ

CCD カメラを用いた非接触変位計測システムを使用し,RC 梁の せん断変形の測定,算出することができた.

·測定方法や解析方法などの細かい部分を修正する必要がある.

## **参考文献**】

1) 三谷産業(株): Windows 汎用画像処理パッケージ Win ROOF 取扱説明書

2)大滝 健 SIZE EFFECTS IN SHEAR FAILURE OF REIFORCED CONCRETE BRIDGE COLUMNS 京都大学博士論文 p46~48, 2001.3



図-3 せん断変形と曲げ変形の算定方法



図-4 変形量の比率