曲げ破壊型 RC 柱部材の 塑性変形評価と座屈挙動に関する研究

学生氏名 渡辺耕平

指導教員 吉川弘道

曲げ破壊型鉄筋コンクリー | 柱部材の終局時に至るまでの変形挙動を精度よく評価するためには,破壊が局所化 する領域の挙動を明らかにする必要がある.そこで本論では,鉄筋コンクリー | 柱部材を対象に,軸方向鉄筋の座 屈による耐力低下を実験 解析両面から検討するものである.まず,正負交番漸増繰返し載荷実験より塑性変形領 域の現象と座屈メカニズムを把握した.そして,鉄筋単体の座屈を考慮した弾塑性座屈モデルの定式化を行い,曲 げ変形解析であるファイバーモデルに組込むことにより塑性域における耐力低下の再現を試みた.さらに,繰返し 大変形により生じる塑性ヒンジ長と座屈領域との関係を定量的に評価した.これらの条件をふまえ,座屈要因の感 度解析を実行し,数値パラメトリックシミュレーションにより変形性能の評価を実施した.

Key Words : reinforced concrete column, buckling behavior, flexural failer, elasto-plastic buckling model, fiber model

1.まえがき

1995 年に発生した兵庫県南部地震で鉄筋コンクリート(以下 RC)構造物が多大な被害を受けたことから脆性的なせん断破壊を回避するために,帯鉄筋を密に配置すること等による耐震性能の向上が試みられている.すなわち,十分な塑性変形や靭性を保持し,構造物の脆性的な崩壊を免れようというものである.

まず,曲げせん断破壊した RC 柱部材(以下既存柱) に靭性率が10を確保するように帯鉄筋を密に配置した プレキャスト補強部材を施し,正負交番漸増繰返し載荷 による実験結果を図-1 に示す.既存柱は著しく耐力が 低下し,柱全体にせん断ひび割れが進展し脆性的な破 壊に至る.一方,補修・補強後は耐力を維持し,緩やか な耐力低下に至る.終局時には,柱基部に局所的な圧 壊および軸方向鉄筋のはらみだしがみられた.

したがって,曲げ破壊型 RC 構造物における最大荷 重以降,終局時に至るまでの耐震性能を精度よく評価 するには,塑性変形領域の現象と軸方向鉄筋の座屈挙 動を明らかにすることが必要と考える.また,塑性変形領 域における座屈区間を正確に捉えることが肝要である.

本研究では,軸方向鉄筋の座屈を実験・解析両面か ら検討する.曲げ破壊型 RC 柱部材の,耐力低下に与 える影響と座屈メカニズムを明確にするとともに,塑性ヒ ンジ長と損傷領域を実験的に検討する.また,軸方向鉄 筋の座屈挙動を合理的に表現するために,軸方向鉄筋 の初期不整を考慮した弾塑性座屈モデルの定式化を行 なった.これを,曲げ解析に多用されるファイバーモデ ルに組込み,塑性域における耐力低下の再現を実施し た.さらに,浅津らによる座屈長の簡易算出式を採用し, 繰返し大変形により生じる塑性ヒン長と座屈領域を定量 的に評価した.また,数値シミュレーションおよびパラメト リックシミュレーションにより座屈挙動の感度解析とRC柱 部材の曲げ変形性能評価を実施した.

2.座屈挙動と塑性ヒンジ領域の実験的評価

(1)実験概要

ここでは,正負交番繰返し載荷における軸方向鉄筋 の座屈が変形性能に与える影響と座屈メカニズムを明ら かにする.また,破壊形式の異なる試験体の塑性変形 領域を塑性ヒンジ長と座屈長および損傷領域から検討 するものである.

試験体の寸法は,断面:320mm×320mm,軸方向鉄 筋比:2.5%,せん断スパン長:1200mm,せん断スパン 比:4.05%で,実構造物の40%を有する.比較対照とし て,帯鉄筋比が0.47%の曲げせん断耐力比を2.0 に設 計し,曲げ破壊を呈した試験体(以下S20C試験体)と帯 鉄筋比を0.19%の曲げせん断耐力比を1.5 に設計し, 曲げせん断破壊を生じた試験体(以下S15-0-3 試験体) とした¹²⁾.

(2)座屈挙動における変形性能と座屈メカニズム

座屈と塑性変形領域の関連性を検討するため,図-2 にS20C試験体の荷重と変位の履歴曲線,図-3 に軸方 向鉄筋の抜出しによる回転変位,荷重と軸方向変位を 示した.最大耐力時の 6 ,では,軸方向変位が抜出し 等の影響により最も伸びていることがわかる.しかし,耐 力低下に至る7 ,では,2回目の繰返し時に耐力が低 下し,軸方向変位の伸び率が著しく減少する.これは, 軸方向鉄筋が2回目の圧縮時において荷重を負担でき なくなり,はらみだすと考えられる.かぶりコンクリートの はく離が観察された,終局時の 8 ,では軸方向変位の 伸びが圧縮側へと移行する.すなわち,圧縮力を負担 できない軸方向鉄筋が,外側へとはらみだし,座屈が助 長されたと推測できる.

軸方向鉄筋の座屈に対する帯鉄筋の拘束効果を図 -4に示す.帯鉄筋のひずみは5 _y以降,挙動に顕著な 変動が確認できる.また,軸方向変位の伸びが減少し, かぶりコンクリートのはく離,耐力低下に至る7 _yでは, 降伏ひずみを卓越する.すなわち,最大耐力以降の軸 方向鉄筋のはらみだしに対して,かぶりコンクリートおよ び帯鉄筋の拘束効果は期待し難いといえる.

実験結果より,曲げ破壊型 RC 柱部材の座屈発生までのメカニズムを図-5 に示す.繰返し下において軸方

向鉄筋が引張降伏し,その後耐力を保持し続けるが,か ぶりコンクリートのはく離により,軸方向鉄筋が圧縮力を 負担できなくなりならみだしが生じる.圧縮力を負担でき ない部材は,耐力低下に至り軸方向鉄筋の座屈が顕著 に表れ,最終的なRC柱部材の破壊に繋がる.

図-5 RC 柱部材の座屈メカニズム

(3)座屈による損傷領域と塑性ヒンジ長の関係

破壊形態の異なるS20CとS15-0-3試験体を対象に塑 性変形領域の損傷過程を塑性ヒンジに着目し,図6, 図-7 に示す.軸方向鉄筋ひずみの塑性域および曲率 は,試験体により異なることが読み取れる.軸方向鉄筋 ひずみに着目すると,S20C試験体は,最大耐力時の6

yでひずみが著しく伸び,高さ296mm (ld 区間:有効 断面高さ)で降伏ひずみを卓越していることがわかる. S15-0-3 試験体では,4 y,5 yと徐々に軸方向鉄筋ひ ずみが伸び,終局時の6 yでは444mmの位置におけ るひずみが著しく変動し,降伏ひずみを卓越する.

曲率分布は,S20C 試験体の場合,柱基部で徐々に 増加する.また,視認による損傷領域と塑性変形領域と がほぼ合致することが読み取れる.一方,S15-0-3 試験 体は,5 _yまでは柱基部において徐々に増加を辿るが, 終局時の6 _yでは,柱中央領域の375mm 付近で曲率 が大きくなることがわかる.

すなわち,大変形下における曲げ破壊型 RC 柱部材 は柱基部において塑性ヒンジを形成するが,軸方向鉄 筋ひずみ,変位による曲率および軸方向鉄筋のはらみ だし等の3者による損傷領域はほぼ合致する.一方,曲 げせん断破壊型 RC 柱部材は,耐力低下まで曲げによ る変形が寄与するが,耐力低下および終局では,せん 断による変形が支配的になり,柱中央部で塑性変形の 増大に至る.塑性ヒンジ長は,試験体諸元等による破壊 形態の影響を受けることがわかった. 3.鉄筋単体の座屈解析手法

(1)鉄筋単体のモデル化

軸方向鉄筋の座屈発生時点では、かぶりコンクリート が大きな損傷を受けており,圧壊もしくははく離している ことから、拘束効果は期待できないものと仮定する.また, 座屈発生時には,鉄筋に若干の曲率が生じているため, 初期不整を考慮することが必要となる³⁾.本研究では, 軸方向鉄筋に初期たわみを与える.

座屈は帯鉄筋の間で生じるため,実構造物中の座屈 区間における鉄筋両端支持条件は,図-8 に示すように 両端固定支持(Fixed-fixed)と両端ヒンジ支持 (Hinged-hinged)の間に存在するものと想定でき,本研 究では両極端として図-9のようにモデル化を行う).

(2)初期たわみを考慮した弾性座屈解析

両支持条件下の初期たわみ y₀は,座屈スパン中央における初期たわみ量 a を用いて次式のように定義する.

$$y_{0} = \frac{a}{2} \left\{ 1 - \cos\left(\frac{2\mathbf{p}}{L_{b}}x\right) \right\} \quad (両端固定)$$

$$y_{0} = a \sin\left(\frac{\mathbf{p}x}{L_{b}}\right) \quad (両端ヒンジ)$$
(1)

軸力 P による付加たわみ y₁ が生じる時の任意点 x にお ける曲げモーメントを梁部材の曲げ支配方程式に代入 し,一般解を解くことにより,全体のたわみ y=y₀+y₁ を次 式のように求解することができる.

$$y(x) = \frac{a}{2(1 - P/P_{cr})} \left\{ 1 - \cos\left(\frac{2\mathbf{p}}{L_b}x\right) \right\} \quad (両端固定)$$

$$y(x) = \frac{a}{1 - P/P_{cr}} \left\{ 1 - \sin\left(\frac{2\mathbf{p}}{L_b}x\right) \right\} \quad (両端ヒンジ)$$

したがって,弾性座屈曲線は,初期たわみがある鉄筋単体のスパン中央における軸力Pとたわみ、の関係より,次式のようになる.

$$d_{\rm v} \equiv y(L_{\rm b}/2) = \frac{a}{1 - P/P_{\rm cr}}$$
 (3)

ここで,P_{cr}は棒部材に関するオイラー座屈荷重を示し, 座屈区間L_bにおける両端支持条件の1波長によって定 まる.オイラー座屈荷重および応力は曲げ剛性 EI,断面 2次半径を用いて以下のようになる.

$$P_{\rm cr} = \left(\frac{p}{l}\right)^2 E l$$
 , $\boldsymbol{s}_{\rm cr} = \left(\frac{pr}{l}\right)^2 E$

本解析では,両端支持条件における1波長の係数 を 以下に示す.

両端固定支持:1=0.5L_b,両端ヒンジ支持:1=L_b

(3)塑性域と全塑性限界解析 5%)

> , になると鉄筋単体の最外縁から降伏が始まる が, 断面内部の応力は降伏応力より小さいため, 棒部材 が完全弾塑性体である場合, 曲げモーメントM が My より 大きくなると降伏域は漸増し, 図-10 のような弾塑性応力 状態となる. 直角保持・平面保持の仮定より, ひずみ分 布は y に比例し, 直線分布と仮定する. このときの曲げ モーメントは

$$M = f_{y} \left(\frac{bh^{2}}{4} - \frac{by_{0}^{2}}{3} \right)$$
 (4)

のように表せ, 極限状態として全断面が降伏し, y₀=0の 完全塑性応力状態となる場合, このときの曲げモーメン トM。は塑性断面係数 Z を用い,次式のようになる.

$$M_{\rm p} = f_{\rm y} b h^2 / 4 \equiv f_{\rm y} Z \tag{5}$$

完全弾塑性体において,円形断面に軸力Pと曲げモー メントMが作用したとき,断面が全塑性状態となる塑性 関数条件 fP,M)=0は次のように算出される.

$$f(P,M) = \left(\frac{P}{P_{y}}\right)^{2.13} + \left|\frac{M}{M_{p}}\right| - 1 = 0$$
 (6)

ここで,鉄筋単体の断面形状は円形断面と仮定し, P_yは 降伏荷重, M_aは全塑性モーメントとする.

曲げモーメントM によって,断面に生じる曲げ圧縮応 力の最大値 s_{max}は,次のように表わせる.

$$\mathbf{s}_{\max} = \frac{P}{A} + \frac{M}{W} = \frac{P}{A} + \frac{P\boldsymbol{d}_{v} + M_{0}}{W} \tag{7}$$

ここで, *s_{max} =f_y* に達するときの P を弾性限界荷重 P_{ep}とし, 初期曲がりのある鉄筋単体が降伏する荷重および応力 を次式に示す.

$$P_{\rm ep} = \frac{1}{2} \left[\left\{ (1 + \boldsymbol{b}) P_{\rm cr} + P_{\rm y} \right\} - \sqrt{\left\{ (1 + \boldsymbol{b}) P_{\rm cr} + P_{\rm y} \right\}^2 - 4P_{\rm cr} P_{\rm y}} \right] \quad (8)$$

$$\mathbf{s}_{\rm ep} = \frac{1}{2} \left[\left\{ (1+\mathbf{b}) \mathbf{s}_{\rm cr} + f_{\rm y} \right\} - \sqrt{\left\{ (1+\mathbf{b}) \mathbf{s}_{\rm cr} + f_{\rm y} \right\}^2 - 4\mathbf{s}_{\rm cr} f_{\rm y}} \right] \Theta$$

ここで各両端支持における条件は,

両端固定 :
$$\boldsymbol{b} = aA/2W$$
 , $P_{cr} = \frac{4\boldsymbol{p}^2 EI}{L_b^2}$

両端ヒンジ:
$$\boldsymbol{b} = aA/W$$
 , $P_{\rm cr} = \frac{\boldsymbol{p}^2 EI}{L_{\rm b}^2}$

のようになる.断面が全塑性状態となる塑性条件,式(6) と曲げモーメントMにより,支持条件で決定するを用いて軸力 Pと横方向変形d、の関係が以下のように算出できる.

$$\boldsymbol{d}_{\mathrm{v}} \equiv \frac{\boldsymbol{w}Z}{A(\boldsymbol{P}/\boldsymbol{P}_{\mathrm{y}})} \left\{ 1 - \left(\frac{\boldsymbol{P}}{\boldsymbol{P}_{\mathrm{y}}}\right)^{2.13} \right\}$$
(10)

ここで,全塑性状態時における両端支持条件の係数 を以下に示す.

両端固定:w=2,**両端ヒンジ**:w=1

図-11 に,両端固定支持の場合における軸力と曲げモ ーメントの相互関係を示す.弾性曲線は曲げモーメント の増加に伴い,オイラー荷重 P_{cr}に漸近する曲線で全塑 性限界曲線は包絡線状に低下する.軸力と横方向変形 関係の模式図を図-12 に示す.軸力 P_{ep}に達すると部材 の凹側から断面の塑性化が開始され,弾性座屈曲線を 乖離し,全塑性限界曲線へと移行する.

(4)材料構成則への導入

軸方向変位に寄与するものとして,以下のものが挙げ られる.

軸力による軸方向変位

弾性たわみ (横たわみ)による軸方向変位

塑性ヒンジによる剛体回転変位

本研究では , による変形を考慮し,軸方向変位 。 を以下のように算出する.

$$\boldsymbol{d}_{\rm u} = \int_0^{L_{\rm b}} d\boldsymbol{d}_{\rm u} = \frac{\boldsymbol{s}}{E} L_{\rm b} + \frac{\boldsymbol{p}^2}{L_{\rm b}} \boldsymbol{d}_{\rm v}^2 \tag{10}$$

式 (10)より,軸方向変位は両端支持条件のもと弾性座 屈曲線および全塑性限界曲線を式(11),式(12)に示 す.

$$\boldsymbol{d}_{\rm u} = \frac{\boldsymbol{s}}{E} L_{\rm b} + \frac{\boldsymbol{p}^2}{L_{\rm b}} \left(\frac{a}{1 - P/P_{\rm cr}}\right)^2 \tag{11}$$

$$\boldsymbol{d}_{\mathrm{u}} = \frac{\boldsymbol{s}}{E} L_{\mathrm{b}} + \frac{\boldsymbol{p}^{2}}{L_{\mathrm{b}}} \left[\frac{\boldsymbol{w}Z}{\boldsymbol{A}(\boldsymbol{p}/\boldsymbol{P}_{\mathrm{y}})} \left\{ 1 - \left(\frac{\boldsymbol{P}}{\boldsymbol{P}_{\mathrm{y}}}\right)^{2.13} \right\} \right]^{2}$$
(12)

式 (11),式 (12)より,各両端支持条件のもと弾性座屈曲 線を式 (13)に全塑性限界曲線を式 (14)に示す.

$$\boldsymbol{e}_{\mathrm{s}}^{*} \equiv \frac{\boldsymbol{s}_{\mathrm{s}}^{*}}{E} + \left(\frac{\boldsymbol{p}}{L_{\mathrm{b}}} \cdot \frac{\boldsymbol{a}}{1 - \boldsymbol{s}_{\mathrm{s}}^{*} / \boldsymbol{s}_{\mathrm{cr}}}\right)^{2}$$
(13)

$$\boldsymbol{e}_{s}^{*} \equiv \frac{\boldsymbol{s}_{s}^{*}}{E} + \left[\frac{\boldsymbol{p}}{L_{b}} \cdot \frac{2Z}{A(\boldsymbol{s}_{s}^{*}/f_{y})} \left\{1 - \left(\frac{\boldsymbol{s}_{s}^{*}}{f_{y}}\right)^{2.13}\right\}\right]^{2}$$
(14)

鉄筋単体の弾塑性座屈挙動は,弾性座屈曲線上を 辿るが,断面の凹側から塑性域が発生し,弾性座屈曲 線から乖離する.ただし,実挙動は図-13 に示すような EP 点通過後,弾性座屈曲線から離脱し,CRS 点の下側 をショートカットし,全塑性限界曲線上に合流する.本研 究では,EP 点からCRS 点の応力に対し,応力低減係数 hを導入することにより,より実挙動に近い弾塑性状態を 再現するものとした.応力低減係数hは最大圧縮応力 $s_{s,nax}^*$,塑性開始応力 $s_{s,cp}^*$,軟化開始応力 $s_{s,crs}^*$ を用い 次式のように義する.

$$\boldsymbol{h} = \frac{\boldsymbol{s}_{s,\max}^* - \boldsymbol{s}_{s,ep}^*}{\boldsymbol{s}_{s,crs}^* - \boldsymbol{s}_{s,ep}^*} \quad (0 \le \boldsymbol{h} \le 1)$$
(15)

(1)塑性ヒンジ長の概念

断面に生じる曲率を高さ方向に積分して RC 橋脚の 水平変位を算出するとき,断面に生じる曲率の評価と曲 率分布の設定が重要であり,両者を適切に評価しなけ ればならない.そこで,このような複雑な挙動を簡易的に 表わす手法として導入された概念が塑性ヒンジ長である. 複雑な塑性曲率の分布を面積が等価な矩形プロックと して置き換え,その矩形プロックの高さを塑性ヒンジ長と 定義するものである.Corley,Sawyer,Mattock,道路橋 示方書・ 耐震設計編⁷⁸⁾などの塑性ヒンジ長算出式は, いずれもせん断スパン長 L および有効断面 d のみで算 出するものである.

(2) 浅津らによる座屈長の簡易算出方法⁹⁾⁽⁰⁾

浅津らは,RC橋脚における塑性ヒンジ長をより合理的 に設定するために,塑性ヒンジ長と関係の深い座屈長の 推定方法を報告している.これは,軸方向鉄筋のはらみ だしに対する帯鉄筋およびかぶりコンクリートの拘束力 を考慮した座屈長を簡易的に算出する手法である.この 提案式を以下に示す.

軸方向鉄筋が塑性化する領域のみを対象とし,帯鉄 筋間隔に配置したバネ要素で支持される1本の梁として モデル化する.概略図を図-14 に示す.帯鉄筋は各軸 方向鉄筋のはらみだしに伴う外向きの力を等分布に受 ける両端固定梁として帯鉄筋のバネ定数で示し,軸方 向鉄筋に対するかぶりコンクリートの影響は,抵抗力とバ ネが工学的に相関を持つ場合が多いことを考慮した形 で示す.軸方向鉄筋に対する弾性支承の等分布バネ定 数を次式で表す.

$$\boldsymbol{b}_n = \frac{384E_s I_h}{nd^3 s} + k_0 c_0 \tag{16}$$

ここで, E_s : 鉄筋の弾性係数 (N/mm²), I: 帯鉄筋 断面 2 次モーメント (mm⁴), n: 圧縮側軸方向鉄筋本 数, d: 有効断面高さ (mm),s: 帯鉄筋間隔 (mm) k_s : かぶりコンクリートによる単位面積当りのバネ定数基 準値 (N/mm³), c_0 : RC 橋脚におけるかぶりI (mm) 材料非線形性を考慮した座屈長算出式を次式に示す.

$$L_b = 8.5 f_{sy}^{0.192} \boldsymbol{b}_n^{-0.346} \boldsymbol{f}$$
 (17)

ここで, *f_{sy}* : 軸方向鉄筋の降伏強度 (N/mm²), : 軸方向鉄筋径 (mm)

(3)座屈長と塑性ヒンジ長の同定評価¹²⁾

曲げせん断破壊および曲げ破壊を呈した 4 試験体を 用い,実験による塑性ヒンジ長(以下実測値)と各算出 式および浅津らによる座屈長の簡易算出式(以下計算 値)との同定評価を示す(表-1,図-15 参照).既往の研 究において提案された各式では,せん断スパン長 L および有効断面 d のみで算出するため,破壊形式の違い が寄与されない.すなわち,帯鉄筋間隔,帯鉄筋径によ る曲げせん断耐力比の変化に反映できず,実験による 実測値とは差が生じていると考えられる.

浅津らによる計算値とS20C 試験体における実測値は ほぼ同値を示すことがわかる.これは,耐力低下の要因 に曲げ変形が支配的に寄与するため,軸方向鉄筋の座 屈領域と損傷領域が,ほぼ合致すると考えられる.曲げ

図-14 曲げモーメントによる応力分布の進行過程

図-15 曲げモーメントによる応力分布の進行過程

表-1 対象試験体の実測値と各算出手法による塑性ヒンジ長評価

	柱断面 (mm)	せん断ス せん パン長 パン (mm)	せん断ス	マ 曲げせん 断耐力比	既往の算出手法による塑性ヒンジ長(mm)				提案手法	実験	計算値と		
試験体名			パン比		Barker	Corley	Sawyer	Mattock	道路橋示方書	の座屈長 計算値	による 実測値	実測値 との差	破壊形態
S10C	320 × 320	20 1200	4.05	1.0	96	162	164	208	148	540	444	96	曲げ ・せん断破壊
S12-1-3				1.2	-					534	296	238	
S15-0-3				1.5	-					481	464	17	
S20C				2.0	91					318	315	3	曲げ破壊

破壊型 RC 橋脚においては塑性ヒンジ長と座屈長は同 値であるといえる.

一方,曲げせん断破壊の3 試験体は,せん断による 変形が寄与するため,実測値による塑性ヒンジ長と座屈 長には差が生じる.S15-0-3 試験体では終局時に至るま でに曲げによる変形が含まれているため,計算値と実測 値が近い値を示したと推察できる.しかし,曲げせん断 耐力比が小さいS12-1-3 試験体およびS10C 試験体は, せん断変形が支配的になっているため,曲げ変形のみ を考慮している計算値と実測値には差が生じると考えら れる.

5.RC 柱部材の非線形解析

RC 柱部材の非線形解析は,まずコンクリートおよび 鉄筋の構成則として応力-ひずみ関係を用い,柱断面に おける曲げモーメント曲率(以下 M-)関係を算出する. さらに,算出された M- 関係と柱部材の曲げモーメント 分布を対応させることにより,柱頭部における荷重-水平 変位(以下 P-)関係を求めることができる.

(1)材料構成則

コンクリート構成則は,既往の研究により,多くの構成 則が提案されている.本解析では,かぶりコンクリートと コアコンクリートの分離および帯鉄筋によるコアコンクリー トの拘束効果を考慮した Mander Model を用いる¹¹⁾.こ れは,実験結果や統計的分析に依存しない理論的な検 討に基づいた評価式である.

一方,本解析に導入した鉄筋構成則には,座屈を考慮しない場合,引張側・圧縮側ともにトリリニアモデルを用い,座屈を考慮する場合,引張側にはトリリニアモデル,圧縮側には前述の弾塑性座屈モデルを適用した. 各構成則の模式図を図-16,図-17に示す.

(2)断面変形量の算出手法

M - f関係は,部材断面の平面保持の仮定に基づき, 部材断面を中立軸に平行な層状(ファイバー)に分割す る離散化手法である(通称ファイバーモデル).解析手 法を図-18 に示す.中立軸位置を仮定し,ひずみ分布 を増加させ,外部軸力N₀と断面合力Nの釣り合い条件 が満足するまで繰返し計算を行うものである.曲げモー メントは軸方向の釣り合い状態を満足するときの図心ま わりにおけるモーメントの釣り合いより算出する.曲率は, そのときの中立軸位置と圧縮縁ひずみより求める.

(3)部材変形量の算出手法

曲げ破壊型 RC 柱部材の変形は , 塑性ヒンジ領域 以外の躯体変形と曲げ降伏後柱基部に発生する塑性

図-17 座屈考慮の有無による鉄筋の応力-ひずみ関係

図-18 M- 関係算出フローチャート

ヒンジ領域に支配される躯体変形のd , 柱基部から の軸方向鉄筋抜け出しにより生じる部材の剛体回転変 位d ,の2種類の変形量を考慮し,全柱頭水平変位は d=d +d によって算出する.

d は, (2)より算出された M - f関係と部材軸方向の

図-19 P- 関係算出フローチャート

曲げモーメント分布を対応させることにより, 塑性ヒンジ 長を考慮した躯体変形を求める.d は,石橋・吉野らの モデル¹²⁾を用いて算出する.図-19 に算出フローチャー トを示す.

(4) 数値シミュレーションによる感度解析

試験体および断面諸元は曲げ破壊を呈した S20C 試 験体と同様のものとし,解析対象諸元の一覧を図-20 に 示す.解析要因には,座屈を考慮した破壊メカニズムを 把握するため,座屈考慮の有無による影響を断面レベ ルで比較する.

また,弾塑性座屈モデルにおける不確定要素の挙動 に与える感度を部材レベルで評価する.不確定要素パ ラメータの一覧表を表-2に示す.

(a)断面挙動における損傷過程評価

図-21 (a)に曲げモーメントと曲率関係, (b)に最外縁 鉄筋の応力と曲率関係を示す.引張鉄筋降伏時までは 両者ともほぼ同値を示し,同様の挙動を辿る.しかし,曲 げモーメントを保持する地点から,両者の曲線が乖離す る特徴がある.これは座屈を考慮した弾塑性座屈モデ ルを導入しているため,圧縮側において耐力を負担する ことができないと考える.また,損傷過程として耐力の低 下を再現していることが確認できる.

一方,座屈を考慮しない場合は,圧縮側の鉄筋応力 が降伏強度まで増加し,その応力を負担し続けることが わかる.

すなわち,弾塑性座屈モデルを用いることにより,曲 げ破壊型 RC 柱部材の塑性変形領域の損傷過程を再 現できるといえる.

図-20 試験体および断面諸元

表-2 弾塑性座屈モデルの不確定要素パラメータ

Model No	パラメータ 要因	支持条件	座屈長 $L_{h}(mm)$	<u>初期たわみ</u> a(mm)	応力低減 係数 u	
1	基本モデル	両端固定	296 (1d)	8	0.5	
2	支持条件	両端ヒンジ		★		
3	初期	両端固定		4		
4	ひずみ			12	V	
5	応力低減			8	1.0	
6	係数		•		0.0	
7	应员目		148(0.5d)		0.5	
8	座出技	•	444(1.5d)	▼	0.5	

Curvature(m⁻¹)

0.2

0.1

0

0.3 0.4 0.5

図-23 部材挙動の比較(パラメータ:応力低減係数)

(b)不確定要素の部材挙動と感度解析評価

弾塑性座屈モデルの不確定要素である4項目を部材 挙動に主眼を置き(表-2参照),挙動に及ぼす影響を図 -22~図-25に示す.両端支持条件と応力低減係数は, 最外縁鉄筋の挙動に顕著な変化が生じるため,鉄筋の 応力と曲率関係についても示す.

両端支持条件は,固定支持の方がヒンジ支持よりも4 倍のオイラー座屈応力を保持するために,荷重が負担 できると考えられる.また,荷重と変位関係において,引 張鉄筋以降,両者の挙動に顕著な差が生じる.応力低 減係数に関しては,圧縮側鉄筋において係数が小さい ほど弾性座屈曲線から早期に離脱し,全塑性限界曲線 へと移行する傾向が顕著に表れている.しかし,最大耐 力,変形性能には影響が反映され難いといえる.初期た わみの違いは,応力低減係数と同様に,荷重と変位関 低の挙動に反映されていないことがわかる.座屈長に関 しては,座屈長の増加に伴い,塑性変形領域の損傷に 影響を与え,耐力低下が著しくなると考えられる.

すなわち,塑性変形領域の耐力低下を評価する際, 両端支持条件と座屈長の変化が,挙動に対して敏感に 反映するといえる.

_											
	初期	たわみ	応力低減係数			軸方向鉄筋構成則					
	a(mm)				構成則	引張	側		圧縮側		
	4		0.5		Mander	トリリ	リニア	塑性座屈			
			座屈	長Lb(mi	市地士社						
	浅津ら 算出		による 手法	道路 による ち	橋示方書 2性ヒンジ長	画 场 又 好 条件					
	318				固定	ヒン	シ				
									1		

表-3 解析諸元 (a) 座屈要素および材料構成則

6.パラメトリックシミュレーションによる 変形性能評価

(1)座屈挙動に関する敏感不確定要素の評価¹²⁾

軸方向鉄筋の座屈挙動を解析する上で,両端支持条件と座屈長は解析結果に大きな影響を与えるが,これらは未解明な要素である.そこで,曲げ破壊を呈した S20C 試験体を対象に両端支持条件および座屈長の評価を実施する.これら2者の比較条件およびその他の解析諸元を表-3 に示す.また,コンクリートおよび鉄筋の材料諸元は,実験値を用いる.

図-26 に (a)座屈長 L_b148mm (道路橋示方書算出), (b)座屈長 L_b318mm (浅津らの算出式)として各両端支 持条件と実験結果を併記して示す.固定支持は両座屈 長において,耐力が実験値を大きく上回ることがわかる. 座屈長 148mm,ヒンジ支持の場合は最大耐力点まで実 験結果を辿るが,それ以降は実験結果と乖離し,緩やか に耐力が低下する.一方,座屈長318mm,ヒンジ支持の 場合は,最大耐力に実験値より早期に達するが,座屈 点とほぼ同値から両者とも耐力低下に至る.また,挙動 に関しても,実験値を辿るように耐力低下を示す.

すなわち,ヒンジ支持は耐力低下までの実挙動を追随し,浅津らによる算出式の座屈長を定めることにより,耐力低下時の挙動を精度よく再現できると考えられる.

(2) 軸方向鉄筋比に関する断面変形性能評価

上記 (1)の考慮に基づき,軸方向鉄筋比 。(1.5%, 1.7%,2.0%,2.5%,3.2%)をパラメータにとり,断面解析 による耐力と変形性能を評価する.

図-27 (a)断面靭性率-軸方向鉄筋比関係,(b)曲げ 耐力-軸方向鉄筋比関係を示す.座屈考慮の有無に関 係なく,軸方向鉄筋比が大きくなると耐力は上がるが, 変形性能に乏しくなり脆性的な破壊に至る.一方,軸方 向鉄筋比が小さくなると変形性能に富み延性的な破壊 に至るが,耐力は低下する傾向にあることが特徴的であ る.また,座屈考慮の有無に関しては,圧縮側に弾塑性 座屈モデルを用いることにより,。の影響を耐力に関与

(b)座屈長 318mm

させることができ,。の増加に対して,曲げ耐力の増加 と反比例する形で靭性率が低下に至る.

(3) せん断スパン比に関する部材変形性能評価

せん断スパン比 L/d (2.03,3.04,4.05,5.07,6.08)を パラメータにとり,部材解析による耐力と変形性能を評 価する.

図-28 (a)部材靭性率-せん断スパン比関係,(b)最大 荷重-せん断スパン比関係,(c)終局変位-せん断スパン 比関係をそれぞれ示す.せん断スパン比の増加に伴い, 耐力は乏しくなるが,終局変位に関しては向上する傾向 にある.これは,曲げモーメントをせん断スパン長で除し て荷重を算出するため,最大荷重は減少に至る.終局 変位の増加に対して,断面靭性率が減少する要因には, せん断スパン長の増加に伴う,柱方向の1分割区間距 離が伸び,降伏変位も助長することが挙げられる.

7.結論

本論は,RC 柱部材における軸方向鉄筋の座屈挙動 と塑性変形の要因を実験と解析の両面からアプローチし, 数値シミュレーション,パラメトリックシミュレーションおよ び両者の比較を実施した.本論のこれまでの内容を以 下のようにまとめる.

曲げせん断破壊する既存橋脚に適切な補修,補強を 施すことにより,繰返し荷重下における変形性能を改善 することができ,大変形下においても緩やかな耐力低下 に至る.これは,損傷が橋脚基部に集中する曲げ破壊 へと移行することを実験的に確認したものである.

曲げ破壊型 RC 柱部材は,繰返し荷重下の軸方向鉄 筋のはらみだしによって耐力低下を引起し,かぶりコンク リートおよび帯鉄筋の曲げに対する拘束効果は期待で きない.また,塑性ヒンジ長は試験体および材料諸元に よって異なり,軸方向鉄筋の座屈区間とかぶりコンクリートのはく離に密接に関係するものであった.

鉄筋単体の座屈挙動について,弾性座屈曲線および 全塑性限界曲線を導入し,初期不整を考慮した弾塑性 座屈曲線の定式化を試みた.さらに,応力低減係数を 定義することにより塑性遷移領域を設け,横方向変形と 軸方向変位の幾何学的関係から,軸方向平均応力と平 均ひずみ関係を導き,鉄筋構成則としての提案を行っ た.これにより,複雑な座屈挙動を簡易的な手法により 取り扱うことが可能となった.

塑性ヒンジ長に関する既往の研究は, せん断スパン 長, 断面高さのみで算出しているが, 帯鉄筋間隔, 材料 強度,鉄筋径等の影響を勘案する必要がある.本論で は,浅津らによる座屈長の簡易算出手法を採用し,破壊

図-28 せん断スパン比による部材変形性能

形態の異なる RC 柱部材の実験に適用した.実験結果 から観測される塑性ヒンジ長と計算による座屈長の比較 をした結果,曲げ変形が支配的な試験体では,両者が ほぼ一致することが確認された.

次に,ファイバーモデルによる RC 柱部材の曲げ変形 解析を実施した.ここでは,圧縮側鉄筋構成則として, 本論にて定式化した弾塑性座屈モデルを用い,拘束コ ンクリートの構成則として Mander Model を採用した.こ のような材料モデルにより,RC 柱部材の損傷過程を十 分再現できることが確認された.

ただし,提案する弾塑性座屈モデルでは,両端支持 条件,初期ひずみ(初期不整),応力低減係数,座屈長 の 4 者が不確定要素となる.パラメトリックシミュレーションを実施し,その感度解析を行った.その結果,RC 柱部材の耐力,変形性能に関して,両端支持条件と座屈長が,特に敏感な要素であることが確認された.

弾塑性座屈モデルを用いて,RC 柱部材の損傷過程 を精度よく再現するためには,上記の敏感不確定要素 を適切に対処することが重要なポイントである.ここでは, パラメトリックシミュレーションと曲げ破壊型 RC 柱部材の 実験結果との比較、考察を行った.その結果,浅津らに よる座屈長を用い,両端ヒンジ支持とすることにより,耐 力低下に至る実挙動を精度よく表現できることがわかっ た.

謝辞:本研究を進めるにあたり,吉川弘道教授,小玉克 已教授,栗原哲彦講師には終始ご指導,ご鞭撻を受け 賜り,ここに厚く御礼申し上げます.また,耐震実験につ いては,東急建設株式会社 技術研究所 土木構造研 究室の宮城敏明氏,服部尚道氏,黒岩俊之氏,早川健 司氏をはじめとする皆様方にご指導,ご協力頂きました. 誠に感謝致します.

最後に,6年間という表期の大学生活を許し,支えてく れた家族に深く感謝致します.

参考文献

- 1) 武蔵工業大学 コンクリート研究室: 平成 9 年度 小型試 験体による RC 単柱の実験結果報告書
- 2) 武蔵工業大学 コンクリート研究室: 平成 10 年度 小型試 験体による RC 単柱の実験結果報告書
- 3) 須田久美子, 村山八洲雄, 一宮利通, 新保弘: 交番繰返

し荷重下における柱筋の座屈挙動, コンクリート構造物の 靭性と配筋方法に関するシンポジウム論文集。日本コンク リート工学協会 pp. 33-40, 1990.5

- 4)竹市八重子:軸方向鉄筋の座屈を考慮した鉄筋コンクリート柱部材の非線形挙動,武蔵工業大学修士学位論文, 1999.3
- 5) 西野文雄,長谷川彰夫:新体系土木工学 7 構造物の弾性解析,第9章,土木学会偏,技報堂出版,1983
- 6) 福本:新体系土木工学9 構造物の座屈 安定解析,第3
 章,土木学会偏,技報堂出版,1983
- 7)池谷和之,千嵐広子: RC 柱の破壊形式の算定,武蔵工 業大学卒業論文,1997.3
- 8) 日本道路協会: 道路橋示方書 V 耐震設計偏, 1996
- 9) 星隈順一,運上茂樹,川島一彦,長屋和宏:載荷繰返し
 特性と塑性曲率分布に着目した曲げ破壊型鉄筋コンクリート橋脚の塑性変形性能とその評価,構造工学論文集
 Vol.44A, pp. 877-888, 1998.3
- 10)浅津直樹,運上茂樹,星隈順一,近藤益央: 軸方向鉄筋 の座屈長がRC橋脚の塑性ヒンジ長に与える影響,第3回 地震時保有耐力法に基づく橋脚の耐震設計に関するシン ポジウム講演論文集 pp. 177-182, 1999.12
- 11)Mander, J.B., Priestley , M.J.N., and Park, R. :"Theoretical Stress-Strain Model for Confined Concrete," *Journal of the Structural Engineering*, Proc. of ASCE, Vol.114, No.ST8, pp1804-1826, Aug.1988.
- 12)石橋忠良,吉野伸一:鉄筋コンクリート橋脚の地震時変形 能力に関する研究,土木学会論文集,No.390/V-8, pp57-66,1988.2

INELASTIC DEFORMATION AND BUCKLING BEHAVIOR

OF REINFORCED CONCRETE COLUMNS FAILED IN FLEXURE

Kohei WATANABE

The damage region and buckling behavior at the column base are some of important factors to assess the ductility capacity of reinforced concrete columns failed in flexure. The present paper examines the decline in the strength due to the buckling of longitudinal reinforcement by experiment and analysis. In the first, the phenomenon of inelastic deformation region and buckling mechanism at the column base are experimentally elucidated under cyclic loading. Analytical formulation is made for elasto-plastic buckling model of a steel bar. The flexural deformation analysis based on fiber model is then carried out by proposed elasto-plastic buckling model. In addition, the relation between plastic hinge length and buckling length is investigated.