鉄筋コンクリート柱の破壊形式と靭性評価

吉永 聡,服部 尚道,吉川 弘道

要約

鉄筋コンクリート柱を対象とし,ファイバーモデルにより曲げ変形解析を行った荷重-変位曲線上に大変位に 伴うコンクリートの劣化過程を考慮したせん断耐力劣化曲線を併記することにより,破壊形式と部材靭性率を解 析的に評価する手法を提案した。次に,本提案手法の妥当性を検証するため,既往の実験結果との比較を行 った。加えて,様々なパラメータが破壊形式と部材靭性率に及ぼす影響を把握するため数値解析を実施し,本 提案手法の適用性について考察した。

1.はじめに

鉄筋コンクリート柱のせん断耐力は,地震時の大変位繰り返しにより低下することが知られている¹⁾。このせん 断耐力の低下が破壊形式や変形性能に及ぼす影響を把握することは,鉄筋コンクリート柱の脆性的な破壊を防 ぐ上で重要である。本研究は,鉄筋コンクリート柱を対象とし,ファイバーモデルにより曲げ変形解析を行った荷 重 - 変位曲線(以下,P- 曲線)上に,大変形に伴う劣化過程を考慮したせん断耐力劣化曲線を併記するこ とにより,破壊形式と部材靭性率を解析的に評価する手法を提案した。ここで,せん断耐力劣化曲線には,既往 の提案モデルを適用することとした。次に,本提案手法の妥当性を検証するため,既往の正負交番載荷試験結 果との比較を行った。加えて,曲げせん断耐力比,せん断耐力のコンクリート寄与分,力学的主鉄筋比,力学的 帯鉄筋比のパラメータが破壊形式と部材靭性率に及ぼす影響を把握するため数値解析を実施し,本提案手法 の適用性について考察した。

2.破壊形式の分類と変形性能評価

鉄筋コンクリート柱部材の破壊形式は, せん断破壊, 曲げ降伏後のせん断破壊(以下,曲げせん断破壊),曲 げ破壊に分類される。図1(a)に,主鉄筋比を変化させた場合の破壊形式の分類を示す。ここで,せん断耐力劣 化曲線が曲げ変形解析した P- 曲線と交差する場合,せん断破壊することを意味している。例えば,曲げ降 伏点より早い時期に交差する場合はせん断破壊Aとなり,曲げ降伏後に交差する場合は,曲げせん断破壊Bと なる。また,両曲線が交差しない場合は曲げ破壊Cとなる。Aは主鉄筋比が特に多い場合に見られる傾向であり, 脆性的な破壊に至るものである。このように,変形の増加に伴いせん断耐力が劣化し,せん断破壊にいたる場 合,すなわち,曲げ変形解析による P- 曲線とせん断耐力劣化曲線が交差する場合の変形性能評価の指標 として,本提案手法ではせん断靭性率 $\mu_s = \sqrt{} xc$ 定義する。ここで, sはせん断破壊時の変位とし, yは曲 げ挙動のみを考慮した曲げ降伏変位である。また,図1(b)に,帯鉄筋比を変化させた場合の破壊形式の分類 を示す。図1(a)の場合と同様,A,B,Cの破壊形式に分類される。当然のことながら,帯鉄筋比が特に小さい範 囲ではせん断破壊となる。

図1(a) 主鉄筋比の影響

3.解析手法

3.1 ファイバーモデルによる曲げ変形解析

曲げ変形解析はファイバーモデルにより逐次繰り返し計算を行うものである。曲げ降伏時の定義は,最外縁引 張鉄筋が降伏ひずみに達する時点とした。曲げ終局時の定義は,最外縁圧縮鉄筋位置におけるコンクリートの ひずみが終局ひずみに達した時点とした。

解析条件として,コンクリートの構成則は帯鉄筋による拘束効果を考慮できる式(1)に示す Mander Model²⁾を 適用した。このモデルは,最大圧縮応力に対する帯鉄筋による拘束効果を円形,正方形,壁式の各断面状に 対して拘束有効係数で与えており,無拘束コンクリート(かぶりコンクリート)の場合は拘束有効係数をゼロにする ことで表現できる。ただし,コンクリートの終局ひずみについては定義されていないので,破壊形式が曲げ破壊と 判断されるケースについては式(2)に示す簡易的に土研式²⁾により算出される終局ひずみを適用することと した。

式(1)	式 (2)	
$\mathbf{s'}_c = \frac{f'_{cc} \cdot x \cdot r}{r - 1 + x'}$	$\boldsymbol{s}'\boldsymbol{c} = \boldsymbol{E}_{\boldsymbol{c}}\boldsymbol{e}'_{\boldsymbol{c}}\left\{1 - \frac{1}{n} \left(\frac{\boldsymbol{e}'_{\boldsymbol{c}}}{\boldsymbol{e}'_{\boldsymbol{c}}}\right)^{n-1}\right\}$	$\left(0 \leq \boldsymbol{e'}_{c} \leq \boldsymbol{e'}_{cc}\right)$
$f'_{cc} = f'_{c} \left(2.254 \sqrt{1 + \frac{7.94 f'_{l}}{f'_{c}} - \frac{2 f'_{l}}{f'_{c}} - 1.254} \right)$	$\mathbf{s}'c = f'_{cc} - E_{des} \left(\mathbf{e}'_{c} - \mathbf{e}'_{cc} \right)$	$\left(\boldsymbol{e'}_{cc} \leq \boldsymbol{e'}_{c} \leq \boldsymbol{e'}_{cu} \right)$
$f'_{lx} = K_e \cdot \mathbf{r}_x \cdot f_{yh}$, $f'_{ly} = K_e \cdot \mathbf{r}_y \cdot f_{yh}$	$n = \frac{E_c e_{cc}}{E_c e_{cc} - f_{cc}}$	
$\boldsymbol{r}_s = \frac{4A_h}{s \cdot d_h}$	$f'_{cc} = f'_{cc} + 3.8 a P_s f_{yh}$	
$r = \frac{E_c}{E_c - E_{soc}}$	$e'_{cc} = 0.002 + 0.033 b \frac{f'_s J_{yh}}{f'_{co}}$	
$E_{\rm sec} = \frac{f'_{\rm cc}}{e_{\rm cc}}$	$E_{des} = 11.2 \frac{f'_{\infty}^{2}}{P_{s} f_{yh}}$	
$E_c = 5000 \sqrt{f'_c}$	$\boldsymbol{e'}_{cu} = \boldsymbol{e'}_{cc} + \frac{0.2 f'_{cc}}{E_{des}}$	
$x = \frac{e_c}{e_{cc}}$	$\boldsymbol{r}_s = \frac{4A_h}{s \cdot d_h}$	
$\boldsymbol{e}_{cc} = 0.002 \left\{ 1 + 5 \left(\frac{f'_{cc}}{f'_{c}} - 1 \right) \right\}$	f'cc:帯鉄筋で拘束されたコンクリート	- 圧縮強度 (N/mm ²)
$\boldsymbol{e} = 0.004 + \frac{1.4\boldsymbol{r}_s\cdot\boldsymbol{f}_{yh}\cdot\boldsymbol{e}_{su}}{1.4\boldsymbol{r}_s\cdot\boldsymbol{f}_{yh}\cdot\boldsymbol{e}_{su}}$	f' _{co} :コンクリートの圧縮強度 (N/mm ⁴	<i>(</i>)
。: 带鉄筋体積比 ^{f'} ^{cc}		
_x , _y :X 方向 , y 方向の鉄筋比		ト 終同 ひ 9 み
f'。: コンクリート強度 (N/mm ²)	E : 下路勾配 (N/mm ²)	
K _e :帯鉄筋による拘束効果を考慮した係数		
A _h : 帯鉄筋断面積 (mm ²)		
s:帯鉄筋間隔 (mm)		
d _y :帯鉄筋有効長 (mm)	d、带鉄筋の有効長 (mm)	
f _{yh} :帯鉄筋降伏強度 (N/mm ²)		
E _c :コンクリートのヤング率 (N/mm ²)		
f' _{cc} :拘束されたコンクリートの圧縮強度 (N/mm ²)	円形断面 =0.1 =1.0	
_{su} :帯鉄筋の破談強度 (N/mm ²)		

鉄筋の構成則はひずみ硬化が考慮できる島らのモデル³⁾を適用した。

$$\begin{aligned} \mathbf{S}_{s} &= E_{s} \cdot \mathbf{e}_{s} \\ \mathbf{S}_{s} &= f_{y} \\ \mathbf{S}_{s} &= f_{y} \\ \mathbf{S}_{s} &= f_{y} \left\{ 1 - \exp(\mathbf{e}_{sh} - \mathbf{e}) / K \right\} \cdot \left(1.01 f_{u} - f_{y} \right) \\ \mathbf{S}_{s} &= f_{y} \left\{ 1 - \exp(\mathbf{e}_{sh} - \mathbf{e}) / K \right\} \cdot \left(1.01 f_{u} - f_{y} \right) \\ \mathbf{E}_{s} &: \text{ 主鉄筋 @ fty U J Particular of } \\ \mathbf{F}_{y} &: \text{ ± 鉄筋 @ fty U J Particular of } \\ \mathbf{f}_{y} &: \text{ ± 鉄筋 @ fty U J Particular of } \\ \mathbf{f}_{y} &: \text{ ± 鉄筋 @ fty U J Particular of } \\ \mathbf{f}_{y} &: \text{ ± 鉄筋 @ fty U J Particular of } \\ \mathbf{f}_{y} &: \text{ ± 鉄筋 @ fty U J Particular of } \\ \mathbf{f}_{y} &: \text{ ± 鉄筋 @ fty U J Particular of } \\ \mathbf{f}_{y} &: \text{ ± 鉄筋 @ fty U J Particular of } \\ \mathbf{f}_{y} &: \text{ ± 鉄筋 @ fty U J Particular of } \\ \mathbf{f}_{y} &: \text{ ± 鉄 math B B C (N/mm^{2})} \\ \mathbf{f}_{y} &: \text{ ± \$ math B B C (N/mm^{2})} \\ \mathbf{f}_{y} &: \text{ = thy B B C D E J Particular of } \\ \mathbf{f}_{y} &: \text$$

塑性ヒンジ長は,曲げ降伏後最大耐力まで柱基部から 1.0d(柱断面の有効高を d とする)の区間に形成される モデルとした。曲げ降伏時と曲げ終局時における主鉄筋の抜出しによる回転変位は,石橋らのモデル⁴⁾を適用 した。

3.2 せん断耐力劣化曲線

地震時の繰返し荷重に伴うコンクリートの劣化過程を考慮したせん断耐力の算定方法として, Priestley らの提案式¹⁾を用いた。この提案式は,式(3)に示すようにコンクリートによる負担分,せん断補強筋による負担分,軸 圧縮力による負担分の合算により算出するもの

である。コンクリートの劣化過程は,式(3)にお けるコンクリートの負担分の項において図 2 に 示すような部材の変位靭性率の増加に伴いコ ンクリート圧縮強度に対する有効係数 k を低減 することにより表現されている。 $V = V_c + V_s + V_p$ …式(3)

$$V_{c} = k\sqrt{f'c} \cdot A_{e}$$
$$V_{s} = \frac{A_{v} \cdot f_{yh} \cdot d_{h} \cot \boldsymbol{q}}{S}$$
$$V_{p} = N \tan \boldsymbol{a}$$

V:せん断耐力

- Vc:コンクリートによる寄与分
- Vs:せん断補強筋による寄与分

Vp:軸力による負担分

- fyh: せん断補強筋降伏強度 (N/mm²)
- dh: せん断補強筋有効長 (mm)

: せん断補強筋配置角度

- N:作用軸力 (N)
 - : 圧縮ストラット角度
- k: 劣化を考慮した諸係数
- f'c:コンクリートの強度 (N/mm²)

Ae:有効断面積 (mm²)

- Av: せん断補強筋断面積 (mm²)
- S:帯鉄筋のピッチ

図3に提案する解析手法のフローチャートを示す。本提案手法は,曲げ変形解析によるP- 関係上にせん断 耐力劣化曲線を併記し,それらが交差するか否かにより破壊形式の判定と部材靭性率の評価を行うものであ る。

図3 本提案手法の算出フローチャート

4.本提案手法と既往実験結果との比較

本提案手法の妥当性を検証するため,既往の載荷実験結果との比較を行った。試験体断面は,320×320, せん断スパン比は4.05であり,各試験体は異なる破壊形式を示すものとして設計した。表1に試験体の諸元を 示す。また,実験結果と解析結果を表2に示す。ここで,表2に示す実験値の終局変位とは,早期せん断破壊 時の変位もしくは最大耐力以降に降伏荷重を下回る時点の変位とした。加えて,各試験体の実験結果と本提案 手法による解析結果を併記したP- 関係を図4(a)~(m)に示す。

	有効	コンクリート	主鉄筋		主鉄筋		
No	高	強度		降伏		降伏	軸力
INO.	d	f'c	配置	強度	配置	強度	
	(mm)	(Mpa)		(Mpa)		(Mpa)	(KN)
S05M		28.5		579	6@330	254	
S10M		27.9		370	6@330	554	
S20M		28.6		370	D6@45	444	0
S05C		25.4		579	6@330	254	0
S10C		28.4		370	6@330	354	
S20C		29.5		370	D6@45	444	
S12-1-3	296	20.4	D13-6		D4@135		100
S12-3-3		24.8			D4@135		300
S15-0-3		24.1			D4@45		0
S15-1-3		20.4		402	D4@45	267	100
S15-1-10		24.2			D4@45		100
S15-3-3		24.5			D4@45		300
S15-3-10		25.7			D4@45		300

表1 試験体諸元

	降伏耐力	降伏変位	終局耐力	終局変位	靭性率	
試験体	My/la	у	Vu=Mu/la	u(s)	μ(μs)	破壊形式
	(KN)	(mm)	(KN)	(mm)		
	110	12.4	107.8	12.0	1.00	せん断破壊
S05M	143.7	11.8	147.2	25.4	2.15	
	115.3	9.4	147.8	18.5	2.00	せん断破壊
	73	7.7	103.9	63.9	8.30	曲げせん断破壊
S10M	92.8	8.1	101.2	26.1	3.20	
	74.7	6.9	102.1	21.5	3.10	曲げせん断破壊
	78	7.4	119.6	131.4	17.8以上	曲げ破壊
S20M	92.9	7.1	101.4	57.4	8.30	
	74.8	6.9	141.2	195.7	28.3	<u>曲げ破壊</u>
			107.9	12.3		せん断破壊
S05C	142.0	11.9	145.0	24.7	2.09	
	115.4	9.7	136.8	12.9	1.30	せん断破壊
	76.5	6.9	97.1	30.7	4.50	曲げせん断破壊
S10C	93.0	8.1	101.0	26.1	3.22	
	75.0	7.0	102.1	21.7	3.10	曲げせん断破壊
	69.6	6.8	100.0	57.5	8.50	曲げ破壊
S20C	92.0	7.2	100.0	57.5	7.93	
	75.3	6.9	141.4	193.9	27.90	曲げ破壊
	79.0	5.8	109.0	20.6	4.10	曲げせん断破壊
S12-1-3	98.0	9.3	113.0	29.3	3.15	
	90.9	8.1	115.1	19.7	2.40	曲げせん断破壊
	98.0	7.1	121.0	21.6	3.00	曲げせん断破壊
\$12-3-3	128.0	10.1	128.0	32.6	3.23	
	104.8	8.0	131.4	21.6	2.70	田けせん断破壊
045 0 0	78.0	6.7	102.0	33.8	5.00	田けせん断破壊
\$15-0-3	100.0	8.3	108.0	49.5	5.98	
	//.8	1.2	110.2	26.4	3.70	<u>曲けせん断破壊</u>
045 4 0	82.0	6.2	110.0	32.1	5.20	曲けせん断破壊
515-1-3	108.0	8.9	113.0	50.3	5.68	
	91.2	8.1	113.9	28.9	3.60	曲けせん断破壊
045 4 40	89.0	/.1	110.0	28.2	4.00	曲けせん断破壊
\$15-1-10	109.0	8.9	115.0	51.9	5.85	
	88.2	7.6	116.5	27.9	3.70	<u>曲けせん断破壊</u>
S15-3-3	98.0	/.1	127.0	40.2	5.70	曲けせん断破壊
	128.0	9.7	128.0	54.0	5.58	╓╋╽ <u>╺╝╷</u> ┺╷╴╟╓╴┲ _┺ ⊥╧
	104.3	8.0	127.0	29.6	3.70	
S15-3-10	97.0	/.1	126.0	35.9	5.10	曲りせん断破環
	128.0	9.7	129.0	54.5	5.61	╓╖╷╤┰╾╷╵╓с╖╖╌╤
	105.3	8.0	127.8	29.9	3.80	
					上段	美颖但

表2 実験結果と解析結果

上段 中段 安道設計標準 下段 ファイバーモデル (Mander Model + トリリニアモデル)

図4各試験体の破壊形式と靭性評価

表2より,本提案手法による解析結果と実験結果を比較することにより以下のことが確認された。 (1)降伏耐力,終局耐力ともほぼ一致している

(2) 降伏変位はほぼ一致しているが,曲げ破壊した試験体の終局変位は実験結果よりも小さい

(3) 軸力が耐力および変形性能に及ぼす影響は,ほぼ同様な傾向を示した。

以上より,曲げせん断耐力比,軸力の異なる試験体に対してもほぼ同等の評価ができることから本提案手法の 妥当性が確認できた。

5.本提案手法による数値解析

曲げせん断耐力比, せん断耐力のコンクリート寄与分, 力学的主鉄筋比, 力学的帯鉄筋比のパラメータが, 本 提案手法により評価されるため破壊形式と部材靭性率に及ぼす影響を把握するため数値解析を行った。対象と した柱の形状は, 断面が 320 × 320, せん断スパン比が 4.05 である。表 3 に解析に用いたパラメータとその範囲 を示す。

解析パラメータ	範囲		
曲げせん断耐力比(Vy/Vu)	0.55 ~ 2.18		
せん断耐力コンクリート寄与分(VơVy)	0.46 ~ 0.90		
力学的主鉄筋比(Ps・fsy/f'c)	0.3~1.14		
力学的帯鉄筋比(Pw・fwy/f'c)	0.013 ~ 0.063		

表3 解析パラメータの範囲

図5に曲げせん断耐力比(以下, Vy/Vu)に対する部材靭性率を示す。加えて,既往の実験結果と鉄道構造物 等設計標準・同解説(以下,鉄道標準)により算出した結果も併記した。本提案手法による結果に着目すると, 各破壊形式と Vy/Vu の関係は,せん断破壊では Vy/Vu < 0.77,曲げせん断破壊では 0.77 < Vy/Vu < 1.50,曲 げ破壊では1.50 < Vy/Vu にほぼ分類できる。また,本提案手法と鉄道標準による結果を比較してみると,各破壊 形式における曲げせん断破耐力比と部材靭性率は鉄道標準より本提案手法が小さい値となった。

図 6 にせん断耐力に対するコンクリート負担分 (Vc/Vy)をパラメータとした場合の部材靭性率を示す。せん断耐力のコンクリート寄与分の割合が増加するにつれて,部材靭性率は低下している傾向が見られる。しかし本提案手法による解析値は Vc/Vy の減少に伴い部材靭性率低下するものの,ばらつきが大きくなっているすなわち部材靭性率は帯鉄筋比の影響を反映する Vc/Vy だけでなく主鉄筋比の大きさが影響するものと考えられる。

図7に力学的主鉄筋比,力学的帯鉄筋比をパラメータとした部材靭性率と力学的主鉄筋比,力学的帯鉄筋比 との解析結果を示す。力学的主鉄筋比の増加に伴い破壊形式は曲げ破壊から曲げせん断破壊,せん断破壊 へと移行している。また,帯鉄筋比の増加に伴い部材靭性率は一定勾配で大きくなるものの,主鉄筋比の増加 に伴い増加勾配は徐々に小さくなっている.つまり,部材靭性率は帯鉄筋の増加に伴い大きくなるが,主鉄筋 比がある程度大きい範囲では帯鉄筋を増加しても部材靭性率の向上は見込めないといえる。

6. 結論

鉄筋コンクリート柱を対象とし,ファイバーモデルによるP- 曲線とせん断耐力劣化曲線により破壊形式の 判定と靭性評価する解析手法を提案し,以下に示す事項について確認した。

- (1) せん断耐力劣化曲線としてPriestley式について既往実験結果との比較を行った結果,本提案手法による破壊形式および靭性率はいずれの実験結果とほぼ一致した。
- (2)本提案手法による数値解析を実施し,設計パラメータが破壊形式および部材靭性率の評価に及ぼす影響 を把握した。その結果,破壊形式と変形性能は曲げせん断耐力比のみにより分類されるのではなく,力学的 主鉄筋比と力学的帯鉄筋比によっても分類されることが確認できた。

【参考文献】

- Preistley, M.J.N and Paulay, T:Seismic Design of reinforced Concrete and Masonry Building, john Wiley &Sons, 1995.10
- 2) 前川・岡村:鉄筋コンクリートの非線形解析と構成則,技報堂出版,1991.5.25
- 3) 島弘,周礼良,岡村甫:異形鉄筋の鉄筋降伏後における付着特性,土木学会論文集,No.378/V-6, pp213-220,1987.2
- 4)鉄道総合研究所:鉄道構造物等設計標準・同解説,コンクリート構造物,丸善株式会社,1992.11
- 5) 池谷,千嵐: RC 単柱における破壊形式の判定,平成8年度武蔵工業大学卒業論文,1997.3
- 6) 池谷:繰返し荷重を受ける鉄筋コンクリート柱の力学的挙動に関する実験的研究,平成10年度 武蔵工業大学修士論文,1993.3
- 7) 服部・宮城・増田・池谷・吉川: コンクリート柱の破壊形式と靭性の評価,第 10 回日本地震工学シンポジウム F1-15,1998