RC 単柱橋脚に及ぼす上下動の影響

-弾性理論解に基づく解析的考察-

松原勝己(東電設計)・吉川弘道(武蔵工大)・浦野和彦(ハザマ)

(目次)

- 1. はじめに
- 2. 質点-柱系の解析
 - 2.1 基本式
 - 2.2 変位解の誘導
 - 2.3 応力の算定
 - 2.4 計算事例による考察
- 3. 梁-柱系での解析
 - 3.1 梁の基本方程式
 - 3.2 梁-柱系のモデル化
 - 3.3 連立方程式の導出
 - 3.4 連立方程式の求解
 - 3.5 応力と固有振動数
 - 3.6 固有振動数の試算
- 4. 梁の上下震動の影響
 - 4.1 梁の上下震動の基本方程式
 - 4.2 減衰のない自由振動解
 - 4.3 減衰のある強制振動解
 - 4.4 支点反力式の解釈
 - 4.5 試算例
- 5. まとめ

1. はじめに

1995 年阪神・淡路大震災では、高速道路の橋脚に甚大な被害が生じた。その後、解析や 実験などを通じて、原因が明らかになってきているが、上下動が橋脚に及ぼす影響に関し ては、未だ議論が尽きず、影響があるなしについて賛否両論があるというのが現状である。 「影響あり」の論者は、RC 単柱に見られた、輪切り状ひび割れという被害形態に着目し、 曲げないしせん断によるものではないことを主張している[宮本ら(1996),別府・石川ら (1997),園田ら(1997)など]一方、「影響なし、あるいは影響は少ない」の論者は、水平動 のみを考慮した解析で橋脚のせん断破壊を説明できることや、上下動を考慮した解析によ っても解析結果に及ぼす影響が小さいことから、水平動が被害の主因であることを主張し ている。

筆者らも、この橋脚に及ぼす上下動の影響について興味を持っており、弾性論に基づく 解析を行ってきた [松原・吉川・浦野(1998)]。この小論はその解析プロセスと結果の紹介 である。読者の参考になれば、幸いである。

2. 質点-柱系の解析

2.1 基本式

RC 単柱橋脚を、図-1 に示すように上部工と張り出し部を含む質点と柱にモデル化し、柱 下の固定端に上下動が入力される場合を想定する。

図の微少要素 dx に関する運動方程式は、式

(1)で表される。

$$Adx \boldsymbol{r} \frac{\partial^2 u}{\partial t^2} = (\boldsymbol{s} + d\boldsymbol{s})A - \boldsymbol{s}A$$
(1)

ここに、u:鉛直変位

A:柱の断面積

- :柱の密度
- :直応力

直応力 と直ひずみとの関係から、式(2)が成 立する。

図-1 質点-柱系のモデル化

 $\boldsymbol{S} = E \frac{\partial u}{\partial x} \tag{2}$

ここに、E:柱のヤング係数

式(1)および(2)より、

$$Adx\mathbf{r}\frac{\partial^2 u}{\partial t^2} = (E\frac{\partial u}{\partial x} + E\frac{\partial^2 u}{\partial x^2}dx)A - E\frac{\partial u}{\partial x}A$$
$$\frac{\partial^2 u}{\partial t^2} = \frac{E}{\mathbf{r}}\frac{\partial^2 u}{\partial x^2}$$

すなわち

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$
(3a)

$$\Box \Box | \Box_{n} \qquad c = \sqrt{\frac{E}{r}}$$
(3b)

式(3a)は、(1次元の)波動方程式と呼ばれる。詳しい説明は省略するが、式(3a)の一般解 を求めると、座標xの正・負両方向に伝播速度cで伝わる解が得られることが分かっている。 この問題の場合には、波動の伝播速度が式(3b)の柱のヤング係数と密度で表されることにな る。

一般に、2 階微分方程式は2 つの未知定数を持つ一般解を有し、したがって2 つの境界条件を指定することで解が決定される。この問題の場合は、柱の上下端における境界条件を 指定する。具体的には、柱下端で変位が入力変位に一致すること、柱上端で軸力が質量 m に作用する慣性力と釣り合うことを考慮する。

すなわち、

$$\mathbf{x}=\mathbf{0} \quad \mathbf{\tilde{C}} \quad \mathbf{u}=\mathbf{u}_0 \tag{4}$$

$$\mathbf{x}=\mathbf{I} \quad \mathbf{\tilde{C}} \quad E\frac{\partial u}{\partial x}A = -m\frac{\partial^2 u}{\partial t^2} \tag{5}$$

2.2 変位解の誘導

式(3)の振動数領域(正弦波入力)の解を求めるために、u=Uexp(i t)(U:振動数領域の変位、i:虚数単位、 :円振動数)と置けば、式(3)の一般解は式(6)で表される。

$$u=\{C_1\exp(-ikx)+C_2\exp(ikx)\}\cdot\exp(i t)$$
(6)

ここに、C₁, C₂:境界条件より決まる任意定数

 C_1 + C_2 = U_0

また、式(6)より

$$\frac{\partial u}{\partial x} = ik \{-C_1 \exp(-ikx) + C_2 \exp(ikx)\} \exp(iwt)$$
$$\frac{\partial^2 u}{\partial t^2} = -w^2 \{C_1 \exp(-ikx) + C_2 \exp(ikx)\} \exp(iwt)$$

上式と式(5)を考慮すれば

ikEA{-C₁exp(-ikl)+C₂exp(ikl)} = m 2 {C₁exp(-ikl)+C₂exp(ikl)} すなわち、

$$-(m ^{2}+ikEA)exp(-ikl) \cdot C_{1} + (-m ^{2}+ikEA)exp(ikl) \cdot C_{2} = 0$$
(9)

式(8)と(9)を連立して、C₁および C₂を求める。式(8)より、C₂=-C₁+U₀を式(9)に代入すれば、

-(m 2+ikEA)exp(-ikl)・C1 + (-m 2+ikEA)exp(ikl)・(-C1+U0) = 0 すなわち、

$$C_1 = \frac{(-m\mathbf{w}^2 + ikEA)\exp(ikl)}{(m\mathbf{w}^2 + ikEA)\exp(-ikl) + (-m\mathbf{w}^2 + ikEA)\exp(ikl)}$$
(10)

$$C_2 = \frac{(m\mathbf{w}^2 + ikEA)\exp(-ikl)}{(m\mathbf{w}^2 + ikEA)\exp(-ikl) + (-m\mathbf{w}^2 + ikEA)\exp(ikl)}$$
(11)

2.3 応力の算定

柱に作用する直応力は、

$$\mathbf{s} = E \frac{\partial u}{\partial x} = ikE\{-C_1 \exp(-ikl) + C_2 \exp(ikx)\}$$
(12)

式(12)に式(10)および(11)を代入して

$$\boldsymbol{s} = \frac{ikEU_0\{-(-m\boldsymbol{w}^2 + ikEA)\exp(ikl)\exp(-ikx) + (m\boldsymbol{w}^2 + ikEA)\exp(-ikl)\exp(ikx)\}}{(m\boldsymbol{w}^2 + ikEA)\exp(-ikl) + (-m\boldsymbol{w}^2 + ikEA)\exp(ikl)}$$

したがって、

$$\frac{s}{rc\dot{U}_{0}} = \frac{-(-1+i\frac{kEA}{mw^{2}})\exp\{ikl(1-\frac{x}{l})\} + (1+i\frac{kEA}{mw^{2}})\exp\{-ikl(1-\frac{x}{l})\}}{(1+i\frac{kEA}{mw^{2}})\exp(-ikl) + (-1+i\frac{kEA}{mw^{2}})\exp(ikl)}$$
(13)

(8)

ここに、
$$\dot{U}_0 = i\mathbf{w}U_0$$
 である。
ここで、
$$\mathbf{k} = kl = 2\mathbf{p}\frac{l}{\mathbf{l}}$$
$$p = \frac{kEA}{m\mathbf{w}^2} = \frac{m_p}{m}\frac{1}{kl} = \frac{m_p}{m}\frac{1}{\mathbf{k}}$$
$$\mathbf{x} = \frac{x}{l}$$

と置く。ここで、 : 波長、 =kl, m_p = Al (橋脚の質量)である。このとき、式(13)は以下のように変形できる。

$$\frac{\mathbf{s}}{\mathbf{r}c\dot{U}_{0}} = \frac{-(-1+ip)\exp\{i\mathbf{k}(1-\mathbf{x})\} + (1+ip)\exp\{-i\mathbf{k}(1-\mathbf{x})\}}{(1+ip)\exp(-i\mathbf{k}) + (-1+ip)\exp(i\mathbf{k})}$$
$$= \frac{i\{p\sin\mathbf{k}(1-\mathbf{x}) + \cos\mathbf{k}(1-\mathbf{x})\}}{\sin\mathbf{k} - p\cos\mathbf{k}}$$
$$= \frac{i\sin\{\mathbf{k}(1-\mathbf{x}) + \mathbf{a}\}}{\sin(\mathbf{k} + \mathbf{b})} \qquad (\tan\mathbf{a} = \frac{1}{p}, \tan\mathbf{b} = -p)$$
(14)

式(14)は、無次元座標x/lでの無次元直応力 $S/(\mathbf{R}\dot{U}_0)$ が とpで決まることを示す。 式(14)によれば、 および pを固定(l および m_p/mを固定)して、 を変化させると、 (1-)+ = /2 で最大値をとる。すなわち、

$$\boldsymbol{x} = 1 - \frac{1}{\boldsymbol{k}} \left(\frac{\boldsymbol{p}}{2} - \boldsymbol{a} \right) \qquad (0 \le \boldsymbol{x} \le 1)$$
(15)

式(14)によれば、分母をゼロにする条件 + =0のとき、共振点となる。すなわち、式 (16)を満足するとき共振点となる。

$$\boldsymbol{k} \tan \boldsymbol{k} = \frac{m_p}{m} \tag{16}$$

なお、1 質点・バネ系では、 (波長無限大)に相当するので、このとき 0 となるから、tan となり式(16)は、式(17)となる。

$$\boldsymbol{k}^2 = \frac{m_p}{m} \tag{17}$$

 m_{p} = Al, = l/c= l (/E)を考慮すれば、式(17)は = (EA/(ml))となる。これは、1

自由度系の固有円振動数に一致していることが確認できる。

2.4 計算事例による考察

前節までの議論から、c(コンクリートの縦波速度),f(振動数),m_p/m(橋脚と上部工の質量比)およびl(橋脚長さ)を既知量として以下の式で計算できる。

応力の算定式

$$I = \frac{c}{f} \tag{18a}$$

$$\boldsymbol{k} = 2\boldsymbol{p}\frac{l}{\boldsymbol{l}} \tag{18b}$$

$$p = \frac{m_p}{m} \frac{1}{\mathbf{k}}$$
(18c)

$$\boldsymbol{a} = \tan^{-1}(\frac{1}{p}) \tag{18d}$$

$$\boldsymbol{b} = \tan^{-1}(-p) \tag{18e}$$

$$\left|\frac{s}{rc\dot{U}_{0}}\right| = \left|\frac{\sin\{k(1-x)+a\}}{\sin(k+b)}\right| \quad (\mbox{ m}\mbox{$\%$}\m$$

ここに、 :波長、c:縦波速度(= (E/)) f:振動数、l:橋脚高さ、 m_p :橋脚の質 量、m:上部構造重量、 :直応力、 :密度、 \dot{U}_{l} 入力速度、 :無次元座標(=x/l)

固有振動数の算定式

$$\boldsymbol{k} \tan \boldsymbol{k} = \frac{m_p}{m} \tag{19a}$$

$$f_n = \frac{kc}{2n!} \tag{19b}$$

ここに、fn: 固有振動数

阪神・淡路大震災で被害を受けた代表的な橋脚の諸元として、下記の条件における計算 例を示す。

上部構造重量 W=1200tf(張り出し部を含む) 橋脚断面 2.8m×2.8m 弾性波速度 c=3000m/s 橋脚高さ l=12m $m_p/m=1/4$

上記条件のもとで、1次および2次の固有振動数が、式(19)を用いることにより以下のように求めることができる。

=0.48 のとき f1=19.1Hz

=3.22 のとき f₂=128Hz

表-1 各ハフメータの計

f(Hz)	(m)	Ι/		р		
5	600	0.02	0.1257	1.9894	0.4658	-1.1050
10	300	0.04	0.2513	0.9947	0.7880	-0.7828
15	200	0.06	0.3770	0.6631	0.9852	-0.5856
20	150	0.08	0.5027	0.4974	1.1093	-0.4615
25	120	0.1	0.6283	0.3979	1.1921	-0.3787
30	100	0.12	0.7540	0.3316	1.2506	-0.3202
40	75	0.16	1.0053	0.2487	1.3271	-0.2437
50	60	0.2	1.2566	0.1989	1.3744	-0.1964
75	40	0.3	1.8850	0.1326	1.4389	-0.1319
100	30	0.4	2.5133	0.0995	1.4717	-0.0991
130	23.08	0.52	3.2673	0.0765	1.4944	-0.0764

パラメータの計算

表-2 無次元直応力の計算

無 次 元 直 応 力											
	=	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
	0										
f=5Hz	-0.672	-0.659	-0.646	-0.633	-0.621	-0.608	-0.594	-0.581	-0.568	-0.554	-0.541
10Hz	-1.701	-1.676	-1.649	-1.621	-1.592	- 1.562	-1.532	-1.500	-1.467	-1.434	-1.399
15Hz	-4.725	-4.684	-4.636	-4.582	-4.521	-4.454	-4.380	-4.300	-4.215	-4.123	-4.025
20Hz	24.304	24.324	24.282	24.178	24.014	23.789	23.504	23.160	22.757	22.296	21.780
25Hz	3.922	3.977	4.017	4.040	4.048	4.039	4.015	3.975	3.919	3.848	3.761
30Hz	2.159	2.228	2.284	2.328	2.358	2.375	2.379	2.369	2.345	2.308	2.258
40Hz	1.049	1.144	1.227	1.299	1.357	1.401	1.431	1.447	1.448	1.434	1.406
50Hz	0.560	0.681	0.791	0.889	0.973	1.041	1.093	1.128	1.144	1.143	1.124
75Hz	-0.184	0.006	0.197	0.380	0.550	0.701	0.826	0.923	0.986	1.015	1.008
100Hz	-1.123	-0.839	-0.502	-0.134	0.243	0.604	0.928	1.193	1.383	1.486	1.496
130Hz	20.269	19.518	16.701	12.118	6.252	-0.275	-6.773	- 12.554	- 17.007	-19.661	-20.235

(注)上記表の無次元応力は式(18f)により計算した。また、網掛けは各振動数において

最大応力が発生する橋脚位置を示す

図-2 に各振動数ごとの無次元最大応力とその発生位置を示す。最大応力の発生位置は、 各振動数ごとに異なっている。図-2 によれば、最大応力は一次共振点(19.1Hz)と二次共 振点(128Hz)において大きくなることが示されている。また、一次共振点より低い振動数 では柱下端に最大応力が発生するが、一次共振点から二次共振点に向かうにつれて最大値 の発生位置が柱上端に移動している。

図-3 に振動数ごとにひび割れ発生が予想される入力速度を示す。これは、以下のように 算定した。例えば、75Hz における無次元応力__=1.015 のとき、以下の通りである。

密度 = /g=2.5/9.8=0.255tfsec²/m⁴

コンクリートの縦波速度 c=3000m/sec

上部構造重量 W=1200tf

柱重量 Wp=300tf

自重による直応力 ₀=(1200+300)/(2.8×2.8)=191tf/m²=19.1kgf/cm²

クラックが生じるのに必要な直応力 CR=19.1+30=49.1kgf/cm²

クラックを生じる入力速度 U_{CR}= _{CR}/(c_)=49.1/(0.255×3000×1.015)=0.0632m/sec =63.2kine

本検討では、コンクリートの減衰を考慮していないことから、共振点付近の応答は過大 評価していると考えられるが、図-3 によれば、振動数 20Hz から 120Hz の間で 50kine 程 度の入力速度でひび割れが生じる可能性があることがわかる。

図-4 に一次共振点付近および二次共振点付近における柱高さ方向の無次元直応力の分布 を示す。一次共振点付近では高さ方向に一様な引張・圧縮が生じているのに対し、二次共 振点付近では高さ位置により引張と圧縮の両者が生じることがわかる。

図-2の最大応力発生位置と図-3のひび割れ発生の入力速度の算定結果は、RC柱の輪状ひび割れが柱中間部で発生した事実と考え合わせると、20Hz以上の高振動数成分を有する上下動が起因している可能性が考えられる。

図-2 振動数と最大応力お よび発生位置の関係

図-3 振動数とひび割れ発 生時の入力速度との関係

図-4 発生応力の高さ方向 分布

3. 梁-柱系での解析

前項では、一質点-柱系での解析を実施した。実際の橋梁では上部構造に桁が存在し、桁 が上下震動することが、柱の鉛直応力に影響を及ぼすことが考えられる。前項のように上 部構造を一質点でモデル化すると、上下動によって桁が曲げ振動する効果を考慮できない。 したがって、桁の上下震動と柱の引張・圧縮挙動の相互作用を扱うために、梁-柱系で解析 する必要が生じる。ただし、前項の解析が無意味ということではなく、上下動による桁の 固有振動数は数 Hz 程度と考えられるので、数十 Hz 以上の高振動数を有する衝撃的な地震 荷重を問題にする場合には、上部構造を一質点でモデル化することが許されると考えられ るわけである。

以下では、梁-柱系での解析方法を述べる。柱の基本方程式は 2.1 で述べたので、まず梁 の基本方程式から説明する。

3.1 梁の基本方程式

図-5 を参照して、梁が曲げ震動するときの基本 方程式を誘導する。

梁の微少部分 dx に関する上下方向に動的釣り合 い式は、式(20)で表される。

$$Q - (Q + \frac{\partial Q}{\partial x}dx) - \mathbf{r}dx \cdot A \frac{\partial^2 u}{\partial t^2} = 0 \qquad (20)$$

微少部分 dx についてのモーメントの釣り合い式は、 式(21)で表される。

$$M - (M + \frac{\partial M}{\partial x}dx) + Q\frac{dx}{2} + (Q + \frac{\partial Q}{\partial x}dx)\frac{dx}{2} = 0$$
(21)

曲げモーメントと曲率の関係から、

$$M = EI \frac{\partial^2 u}{\partial x^2}$$
 (EI:梁の曲げ剛性) (22)
式(21)より高次の微少量を無視し、次式を得る。

$$Q = \frac{\partial M}{\partial x} \quad (23)$$

式(22)と(23)から

$$Q = EI \frac{\partial^3 u}{\partial x^3}$$
 (∵ 等断面梁を仮定) (24)

図-5 梁の曲げ震動の解析モデル

式(20)と(24)から

$$EI \frac{\partial^{4} u}{\partial x^{4}} + rA \frac{\partial^{2} u}{\partial t^{2}} = 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

式(25)が、部材曲げ剛性 EI、梁の単位軸方向長さあたりの質量 A を有する梁の曲げ震動 に対する基本方程式である。

x=h; $u = u_2$ (33) 部材 ; 基本式 $^{2}u / t^{2} + a^{2} ^{4}u / x^{4} = 0$ (34) $(a = (E_B I_B / (B_A B)))$ 一般解 $u = (c_5 \cos(k_B x) + c_6 \sin(k_B x) + c_7 \cosh(k_B x) + c_8 \sinh(k_B x))e^{it}$ (35) $(k_{B}= (/a))$ 境界条件 x=0; u =u1 (変位の連続条件) (36)²u / x²=0 (梁端部でのモーメントがゼロ) (37) $E_BI_B \ ^3u \ / \ x^3 = -EA(\ u \ / \ x)_{x=h}$ (38)(梁端部のせん断力と柱上端の軸力との釣り合い) x=l; $u = u_2$ (39) $^{2}u / x^{2}=0$ (40) E_BI_B ³u / x³=-EA(u / x)_{x=h} (41)

以上より、未知数と方程式の数の比較を行うと、以下の通りであり上記の方程式系が閉 じていることがわかる。

未知定数・未知変位: c1, c2, c3, c4, c5, c6, c7, c8, u1, u2(計10箇)

境界条件:式(28),(29)(部材)式(32),(33)(部材)式(36)~(41)(部材)(計10箇) すなわち、上記の境界条件により未知定数および未知変位に関する10箇の方程式が得られ ることになる。

3.3 連立方程式の導出

式(27)および(28)より $c_1 = U_0$ (42) 式(27)および(29)より $c_1 \cos kh + c_2 \sin kh = U_1$ (43) 式(31)および(32)より $c_3 = U_0$ (44) 式(31)および(33)より $c_3 \cos kh + c_4 \sin kh = U_2$ (45) 式(35)および(36)より

 $c_5 + c_7 = U_1$ (46)

$$\frac{\partial u}{\partial x} = k_B \left[-c_5 \sin k_B x + c_6 \cos k_B x + c_7 \sinh k_B x + c_8 \cosh k_B x \right]$$
$$\frac{\partial^2 u}{\partial x^2} = k_B^2 \left[-c_5 \cos k_B x - c_6 \sin k_B x + c_7 \cosh k_B x + c_8 \sinh k_B x \right]$$
$$\frac{\partial^3 u}{\partial x^3} = k_B^3 \left[c_5 \sin k_B x - c_6 \cos k_B x + c_7 \sinh k_B x + c_8 \cosh k_B x \right]$$

-
$$c_5 + c_7 = 0$$
 (47)
式(38)より
 $E_B I_B k_B^{3} (-c_6 + c_8) = -EAk(-c_1 \sin kh + c_2 \cos kh)$ (48)
式(39)より

$$c_{5} \cos k_{B} l + c_{6} \sin k_{B} l + c_{7} \cosh k_{B} l + c_{8} \sinh k_{B} l = U_{2}$$
(49)

式(40)より

-
$$c_5 \cos k_B l - c_6 \sin k_B l + c_7 \cosh k_B l + c_8 \sinh k_B l = 0$$
 (50)
式(41)より

$$\begin{split} & E_{B}I_{B}k_{B}^{3}(c_{5}\sin k_{B}l - c_{6}\cos k_{B}l + c_{7}\sinh k_{B}l + c_{8}\cosh k_{B}l) \\ &= EAk(-c_{3}\sin kh + c_{4}\cos kh) \quad (51) \\ \vec{x}(42) &\sim (51)$$
を再掲し、以下の連立方程式にまとめることができる。

$$& c_{1} = U_{0} \quad (52a) \\ & c_{1}\cos kh + c_{2}\sin kh = U_{1} \quad (52b) \\ & c_{3} = U_{0} \quad (52c) \\ & c_{3}\cos kh + c_{4}\sin kh = U_{2} \quad (52d) \\ & c_{5} + c_{7} = U_{1} \quad (52e) \\ & -c_{5} + c_{7} = 0 \quad (52f) \\ & E_{B}I_{B}k_{B}^{3}(-c_{6} + c_{8}) = -EAk(-c_{1}\sin kh + c_{2}\cos kh) \quad (52g) \\ & c_{5}\cos k_{B}l + c_{6}\sin k_{B}l + c_{7}\cosh k_{B}l + c_{8}\sinh k_{B}l = U_{2} \quad (52h) \\ & -c_{5}\cos k_{B}l - c_{6}\sin k_{B}l + c_{7}\sinh k_{B}l + c_{8}\sinh k_{B}l = 0 \quad (52i) \\ & E_{B}I_{B}k_{B}^{3}(c_{5}\sin k_{B}l - c_{6}\cos k_{B}l + c_{7}\sinh k_{B}l + c_{8}\cosh k_{B}l) \\ &= EAk(-c_{3}\sin kh + c_{4}\cos kh) \quad (52j) \end{split}$$

3.4 連立方程式の求解

式(52a)~(52f)より、

$$U_{1} = U_{0} \cos kh + c_{2} \sin kh$$
(53)

$$U_{2} = U_{0} \cos kh + c_{4} \sin kh$$
(54)

$$c_{5} = c_{7} = \frac{U_{1}}{2} = \frac{1}{2} (U_{0} \cos kh + c_{2} \sin kh)$$
(55)

式(52a),(52c)および式(53)~(55)を用い、c1,c3,c5,c7,U1およびU2を消去し、c2,c4,c6および

$$\cos kh^{\bullet} c_{2} - rc_{6} + rc_{8} = U_{0} \sin kh \qquad (56a)$$

$$(\cos k_{B}l + \cosh k_{B}l) \sin kh^{\bullet} c_{2} - 2 \sin kh^{\bullet} c_{4} + 2 \sin k_{B}l^{\bullet} c_{6}$$

$$+ 2 \sinh k_{B}l^{\bullet} c_{8} = U_{0} \cos kh \{2 - (\cos k_{B}l + \cosh k_{B}l)\} \qquad (56b)$$

$$(-\cos k_{B}l + \cosh k_{B}l) \sin kh^{\bullet} c_{2} - 2 \sin k_{B}l^{\bullet} c_{6} + 2 \sinh k_{B}l^{\bullet} c_{8}$$

$$= (\cos k_{B}l - \cosh k_{B}l)U_{0} \cos kh \qquad (56c)$$

$$r(\sin k_{B}l + \sinh k_{B}l) \sin kh^{\bullet} c_{2} - 2 \cos kh^{\bullet} c_{4} - 2r \cos k_{B}l^{\bullet} c_{6}$$

$$+ 2r \cosh k_{B}l^{\bullet} c_{8} = -U_{0} \{2 \sin kh + r \cosh(\sin k_{B}l + \sinh k_{B}l)\} \qquad (56d)$$

$$\Box \Box \Box \Box \sum_{n} r = \frac{E_{B}I_{B}k_{B}^{3}}{EAk}$$

c8に関する連立方程式を求めると、以下のようになる。

式(56a)から(56d)を用い、c4および c8を消去すれば、次式を得る。

$$-c_{2}\left[r^{2}\left(\sin k_{B}l + \sinh k_{B}l\right)\sin^{2}kh - r\left(\cos k_{B}l + 3\cos k_{B}l\right)\cos kh\sin kh + 2\sinh k_{B}l\cos^{2}kh\right] + c_{6}\cdot 2r\left[r\left(\cos k_{B}l - \cosh k_{B}l\right)\sin kh + \left(\sin k_{B}l + \sinh k_{B}l\right)\cos kh\right] \\= U_{0}\left[r^{2}\left(\sin k_{B}l + \sinh k_{B}l\right)\cos kh\sin kh + r\left\{2 - \left(\cos k_{B}l + \cosh k_{B}l\right)\cos^{2}kh + 2\cosh k_{B}l\sin^{2}kh\right\}\right]$$
(57*a*)
$$- 2\sinh k_{B}l\cos kh\sin kh$$

 $c_{2}\left[r(\cos k_{B}l - \cosh k_{B}l)\sin kh + 2\sinh k_{B}l\cos kh\right] + c_{6}\cdot 2r\left[\sin k_{B}l - \sinh k_{B}l\right] = U_{0}\left[-r(\cos k_{B}l - \cosh k_{B}l)\cos kh + 2\sinh k_{B}l\sin kh\right]$ (57b)

式(57)より、c₆を消去すれば、c₂が以下のように求まる。

$$c_{2} = \frac{B}{A}U_{0} \qquad (58)$$

$$A = r^{2}(\sqrt{1 + \tan^{2}\boldsymbol{k}_{B}}\sqrt{1 - \tanh^{2}\boldsymbol{k}_{B}} - 1)\tan^{2}\boldsymbol{k} + 2r(\tanh\boldsymbol{k}_{B} - \tan\boldsymbol{k}_{B})\tan\boldsymbol{k} + 2\tan\boldsymbol{k}_{B}\tanh\boldsymbol{k}_{B}$$

$$B = r^{2}(\sqrt{1 + \tan^{2}\boldsymbol{k}_{B}}\sqrt{1 - \tanh^{2}\boldsymbol{k}_{B}} - 1)\tan\boldsymbol{k}$$

$$+ r\left\{(\tan\boldsymbol{k}_{B}\sqrt{1 - \tanh^{2}\boldsymbol{k}_{B}} - \tanh\boldsymbol{k}_{B}\sqrt{1 + \tan^{2}\boldsymbol{k}_{B}})(1 + \tan^{2}\boldsymbol{k}) + (\tanh\boldsymbol{k}_{B} - \tanh\boldsymbol{k}_{B})(1 - \tan^{2}\boldsymbol{k})\right\}$$

$$- 2\tan\boldsymbol{k}_{B}\tanh\boldsymbol{k}_{B}\tan\boldsymbol{k}$$

$$\Xi \equiv |\boldsymbol{z}|, \quad \boldsymbol{k}_{B} = k_{B}l, \quad \boldsymbol{k} = kh$$

3.5 応力と固有振動数
柱(部材)の直応力を算定する。
部材 の変位は、

$$u = (c_1 \cos kx + c_2 \sin kx)e^{iwt}$$

したがって、応力は、
 $S = E \frac{\partial u}{\partial x} = Ek(-c_1 \sin kx + c_2 \cos kx)$
 $= Ek(-U_0 \sin kx + \frac{B}{A}U_0 \cos kx)$
 $= -EkU_0 \frac{\sqrt{A^2 + B^2}}{A} \sin(kx - a)$
ここに、 $\tan a = \frac{B}{A}$
 $k = \frac{W}{c}, \quad U_0 = \frac{\dot{U}_0}{iW}, \quad E = rc^2 \epsilon \delta = 0$ て、
 $\frac{S}{rc\dot{U}_0} = i \frac{\sqrt{A^2 + B^2}}{A} \sin(kx - a)$ (59)
ここに、式(59)のA およびBは、式(58)のそれと同じである。

式(59)より、梁・柱系の固有振動数は、A=0 のときであるから、次式を得る。 $r^{2}(\sqrt{1-\tanh^{2}\boldsymbol{k}_{B}}/\cos\boldsymbol{k}_{B}-1)\tan^{2}\boldsymbol{k}+2r(\tanh\boldsymbol{k}_{B}-\tan\boldsymbol{k}_{B})\tan\boldsymbol{k}$ $+2\tan\boldsymbol{k}_{B}\tanh\boldsymbol{k}_{B}=0$ (60)

式(60)を満足する振動数が固有振動数となる。ここで、後の計算上の便宜のため変数の書 き換えを行う。

$$r = \mathbf{k}_{B} \sqrt{\frac{p}{q}}, \quad \mathbf{k} = \mathbf{k}_{B}^{2} \sqrt{pq} \quad (61)$$
ここに、 $p = \frac{(E_{B}I_{B})/l^{3}}{EA/h}, \quad q = \frac{m}{m_{B}} \quad (m: 柱の質量, m_{B} : 梁の質量)$

=kh=h /c、 B=kBl= (/a)・l、r=EBIBkB³/(EAk)を考慮すれば、次式を得る。

式(61)の意味は、パラメータrと が固有値 Bと新たに定義したパラメータpおよびq で表されることを示すものであり、言い換えれば、固有値 Bが梁と柱の(長さを考慮した) 剛性比と、梁と柱の質量比に依存することを示している。

式(61)の代わりに、 で整理すれば、次式を得る。

$$r = \sqrt{\mathbf{k}}_4 \sqrt{\frac{p}{q^3}}, \quad \mathbf{k}_B = \frac{\sqrt{\mathbf{k}}}{\sqrt[4]{pq}}$$
(62)

3.6 固有振動数の試算

梁断面として、図-7 に示すような RC·T 桁を考える。スパン長は、l=13m とする。 また、柱断面は 2.8 × 2.8 mの矩形とし、高さ h=12m とする。

梁の断面 2 次モーメント

 $Ig=0.13m^4 \times 4=0.52m^4$

$$0.2m \stackrel{\psi}{\uparrow} \stackrel{\underbrace{2.7m}{\frown}}{\boxed{1.2m}} \int_{1.2m}^{1.2m}$$

図-7 梁の断面形状

$$p = \frac{\frac{E_B I_B}{l^3}}{\frac{EA}{h}} = \frac{\frac{0.52}{13^3}}{\frac{2.8 \times 2.8}{12}} = 3.62 \times 10^{-4}$$

$$q = \frac{m}{m_B} = 0.25$$

$$\mathbf{k}_B = \frac{\sqrt{\mathbf{k}}}{\sqrt[4]{pq}} = \sqrt{\mathbf{k}} \frac{1}{\sqrt[4]{3.62 \times 10^{-4} \times 0.25}} = 10.25 \sqrt{\mathbf{k}}$$

$$r = \sqrt{\mathbf{k}}_4 \sqrt{\frac{p}{q^3}} = \sqrt{\mathbf{k}}_4 \sqrt{\frac{3.62 \times 10^{-4}}{0.25^3}} = 0.390 \sqrt{\mathbf{k}}$$
以上の条件のもとに、式(60)を用いるとk = 0.0936を得る。
$$f = \frac{\mathbf{k}c}{2\mathbf{p}h} = \frac{0.0936 \times 3000}{2\mathbf{p} \times 12} = 3.72 Hz$$

式(60)を用いると、数学的には無限可算箇の固有振動数が求まるが、上記は最も小さい振動数(一次固有振動数)を求めたものである。後に再度述べるが、この値は柱を考慮せずに梁のみの固有振動数とほとんど違わないことが示される。すなわち、梁・柱系で解析したが、相互作用が非常に小さいということになる。上記のパラメータ p が非常に小さいことからもわかるように、梁の剛性に比べて柱の剛性が極めて大きいため、柱の震動が梁に影響を与えなかったものと考えられる。

3.7 特別な条件での検討

3.5 で示した梁・柱系の固有振動数の解のチェックを兼ねて、梁の剛性を極めて大きくした場合にどうなるかを調べてみる。これは、2 でのべた質点・柱系の解に近づくはずである。

 $r^{2}(\sqrt{1 + \tan^{2} \boldsymbol{k}_{B}} \sqrt{1 - \tanh^{2} \boldsymbol{k}_{B}} - 1) \tan \boldsymbol{k} + 2r(\tanh \boldsymbol{k}_{B} - \tan \boldsymbol{k}_{B}) \tan \boldsymbol{k}$ + 2 tan \boldsymbol{k}_{B} tanh $\boldsymbol{k}_{B} = 0$ ここに、 $r = \sqrt{\boldsymbol{k}_{4}} \sqrt{\frac{p}{q^{3}}}$ $\boldsymbol{k}_{B} = \frac{\sqrt{\boldsymbol{k}}}{\sqrt[4]{pq}}$ $p = \frac{E_{B}I_{B}/l^{3}}{EA/h}, \quad q = \frac{m}{m_{B}}$ $\boldsymbol{k} = kh$ 梁・柱系での振動数方程式は、 上式で、梁が剛な場合(p))を検討する。

$$p \to \infty 0$$
とき、 $\mathbf{k}_{B} \cong 0$ であるから
 $\tan \mathbf{k}_{B} \cong \mathbf{k}_{B} + \frac{\mathbf{k}_{B}^{3}}{3}, \quad \tanh \mathbf{k}_{B} \cong \mathbf{k}_{B} - \frac{\mathbf{k}_{B}^{3}}{3}$ を用いると
 $\sqrt{1 + \tan^{2} \mathbf{k}_{B}} \sqrt{1 - \tanh^{2} \mathbf{k}_{B}} \cong 1 + \frac{1}{6} \mathbf{k}_{B}^{4}$
 $\tanh \mathbf{k}_{B} - \tan \mathbf{k}_{B} \cong -\frac{2}{3} \mathbf{k}_{B}^{3}$
 $\tanh \mathbf{k}_{B} - \tan \mathbf{k}_{B} \cong -\frac{2}{3} \mathbf{k}_{B}^{3}$
 $\tanh \mathbf{k}_{B} \tanh \mathbf{k}_{B} \cong \mathbf{k}_{B}^{2}$
 \mathbf{j} なわち
 $r^{2} \mathbf{k}_{B}^{2} \tan^{2} \mathbf{k} - 8r \mathbf{k}_{B} \tan \mathbf{k} + 12 = 0$
 $(r \mathbf{k}_{B} \tan \mathbf{k} - 2)(r \mathbf{k}_{B} \tan \mathbf{k} - 6) = 0$
 $r \mathbf{k}_{B} \tan \mathbf{k} = 2 \text{ or } 6$
 $r \mathbf{k}_{B} = \mathbf{k}_{4} \sqrt{\frac{p}{q^{3}}} \frac{1}{\sqrt{pq}} = \frac{\mathbf{k}}{q}$ より

 \boldsymbol{k} tan $\boldsymbol{k} = 2q$ or \boldsymbol{k} tan $\boldsymbol{k} = 6q$ を得る。

前者は、 tan =2m/m_Bであるから、柱が2本ある場合の質点・柱系の振動数方程式と 一致していることがわかる。

4. 梁の上下震動の影響

3 では、梁・柱系の震動解析を実施したが、それから求められた固有振動数が後に示す梁のみの上下震動の固有振動数とほとんど等しくなった。したがって、柱と梁の連成作用は小さく、梁の上下震動による柱の直応力を求めるには梁のみを独立に解析し、そこで求まった梁の支点反力を柱に作用させてもよいことになる。

以下では、梁の上下震動による支点反力をモード合成法によって算定する。

4.1 梁の上下震動の基本方程式

梁の上下震動の方程式は、式(25)で表される。すなわち、

 $\frac{\partial^2 u_A}{\partial t^2} + a^2 \frac{\partial^4 u_A}{\partial x^4} = 0 \quad (63) [式(25)の再掲]$ ここに、変位 u に A の添え字を付けたのは、絶対変位 (元の静止位置からの全体の変位)

を表すためである。以下では、支点位置からの変位を u で表し、相対変位と呼ぶことにする。(図-8 参照)

このとき、u_A=u+u₀であるから、次式を得る。ここに、u₀は支点の上下変位である。

$$\frac{\partial^2 u}{\partial t^2} + a^2 \frac{\partial^4 u}{\partial x^4} = -\ddot{u}_0(t) \qquad (64)$$

ここに、上付きのドットは、時間に関する微分を表す。

以下では、式(64)をモード合成法によって解くため、 まず梁の減衰がない場合の自由振動解(式(64)の右辺が ゼロの解)を求める。自由振動解とは、構造物対して少 し変形を与え、急にその変形を取り外したときに生じる 振動のことである。

4.2 減衰のない自由振動解

自由振動の方程式は、式(64)より、

$$\frac{\partial^{2} u}{\partial t^{2}} + a^{2} \frac{\partial^{4} u}{\partial x^{4}} = 0$$
(65)
振動数領域に書き換えるために、u=U()eⁱ t と置けば、
$$-(\frac{\mathbf{W}}{a})^{2} U + \frac{\partial^{4} U}{\partial x^{4}} = 0$$
(66)

式(66)の一般解は、

 $U = C_1 \cos kx + C_2 \sin kx + C_3 \cosh kx + C_4 \sinh kx$ (67)

$$\Box \Box \Box k = \sqrt{\frac{w}{a}}$$

以下の境界条件、すなわち梁の上端において変位および曲げモーメントがゼロという境 界条件を指定する。

€

x = 0; U = 0, $\frac{\partial^2 U}{\partial r^2} = 0$ (68*a*) x = l; U = 0, $\frac{\partial^2 U}{\partial x^2} = 0$ (68b) $\frac{\partial U}{\partial x} = k \left[-C_1 \sin kx + C_2 \cos kx + C_3 \sinh kx + C_4 \cosh kx \right]$ $\frac{\partial^2 U}{\partial r^2} = k^2 \left[-C_1 \cos kx - C_2 \sin kx + C_3 \cosh kx + C_4 \sinh kx \right]$ 式(68a)より $C_1 + C_3 = 0$ (69*a*) $-C_1 + C_3 = 0$ (69*b*) 式(69)より $C_1 = C_3 = 0$ (70) 式(68b)より $C_2 \sin kl + C_4 \sinh kl = 0 \qquad (71a)$ $-C_2 \sin kl + C_4 \sinh kl = 0 \qquad (71b)$ 式(71)より、 $C_4 = 0$ が得られ、振動数方程式は、 $\sin k_i l = 0 \qquad (72)$ すなわち、 $k_{j} = \frac{j\boldsymbol{p}}{l} \quad (j = 1, 2, \cdots) \tag{73}$ すなわち、 k= (/a)より、固有円振動数 jは、 $\boldsymbol{w}_{j} = ak_{j}^{2} = \sqrt{\frac{E_{B}I_{B}}{\boldsymbol{r}_{p}A_{p}}} \left(\frac{j\boldsymbol{p}}{l}\right)^{2} \quad (j = 1, 2, \cdots)$ (74) また、モード形 Uj は、C1=C3=C4=0 より、 $U_{j} = C_{2} \sin k_{j} x = C_{2} \sin \left(\frac{j\mathbf{p}x}{l}\right) \qquad (75)$

4.3 減衰のある強制振動解

次に、減衰を有する梁に上下動地震力が持続的に作用するような強制振動の解を求める。 減衰を考慮するために、曲げモーメント M と曲率の関係として、式(22)の代わりに次 式を仮定する。

$$M = E_{B}I_{B}\mathbf{f} + \mathbf{h}\frac{\partial \mathbf{f}}{\partial t} \qquad (76)$$

ここに、 = $^2u/x^2$, :減衰係数

式(76)の第1項は、E_BI_Bを比例係数として曲げ変形 に比例する力(弾性復元力)であ り、第2項は を比例係数として曲げ変形速度 / tに比例する力(減衰力)である。 したがって、

$$Q = \frac{\partial M}{\partial x} = E_B I_B \frac{\partial^3 u}{\partial x^3} + \mathbf{h} \frac{\partial^4 u}{\partial t \partial x^3}$$
(77)

式(20)において、変位 u を絶対変位 u_Aと置き換え、さらに u_A=u+u₀ (u₀:支点の上下変位)として相対変位 u で表すと、

$$\frac{\partial Q}{\partial x} + \mathbf{r}_{B} A_{B} \frac{\partial^{2} u}{\partial t^{2}} = -\mathbf{r}_{B} A_{B} \frac{\partial^{2} u_{0}}{\partial t^{2}} \qquad (78)$$

$$\mathbf{r}A\frac{\partial^2 u}{\partial t^2} + \frac{\mathbf{h}}{\mathbf{r}A}\frac{\partial^5 u}{\partial t \partial x^4} + a^2\frac{\partial^4 u}{\partial x^4} = -\ddot{u}_0(t) \qquad (79)$$
$$\left(a = \sqrt{\frac{E_B I_B}{\mathbf{r}_B A_B}}\right)$$

式(77)および(78)より、次式を得る。

式(79)が、減衰を有する梁の上下震動(強制振動)に対する方程式である。式(64)と比較 すると、減衰項が付加されていることに注意されたい。

モード合成法を用いるために、式(79)の相対変位 u(x,t)を次式の形に置く。 $u(x,t) = \sum_{j} U_{j}(x)q_{j}(t)$ (80)

ここに、 $U_j(t)$:式(75)で表されるモード形、 $q_j(t)$:モード次数 j に依存する時間関数 である。

$$\frac{\partial^{2} u}{\partial t^{2}} = \sum_{j} U_{j} \dot{q}_{j}(t) \qquad (81a)$$

$$\frac{\partial^{5} u}{\partial t \partial x^{4}} = \sum_{j} \frac{\partial^{4} U_{j}}{\partial x^{4}} \dot{q}_{j}(t) = \sum_{j} \left(\frac{\mathbf{w}_{j}}{a}\right)^{2} U_{j} \dot{q}_{j}(t) \qquad (81b)$$

$$\frac{\partial^{4} u}{\partial x^{4}} = \sum_{j} \frac{\partial^{4} U_{j}}{\partial x^{4}} q_{j}(t) = \sum_{j} \left(\frac{\mathbf{w}_{j}}{a}\right)^{2} U_{j} q_{j}(t) \qquad (81c)$$

$$\left(\because \vec{x} (66) \not{x} \not{y} - \left(\frac{\mathbf{w}_{j}}{a}\right)^{2} U_{j} + \frac{\partial^{4} U_{j}}{\partial x^{4}} = 0 \right)$$

$$\vec{x} (81) \not{x} \vec{x} (79) \vec{x} \not{y} + \vec{x}$$

式(81)を式(79)に代入して

$$\sum_{j} U_{j} \left[\ddot{q}_{j}(t) + \frac{\boldsymbol{h}}{\boldsymbol{r}_{B} A_{B}} \left(\frac{\boldsymbol{w}_{j}}{a} \right)^{2} \dot{q}_{j}(t) + \boldsymbol{w}_{j}^{2} q_{j}(t) \right] = - \ddot{u}_{0}(t) \qquad (82)$$

減衰係数と減衰定数の関係

$$h = \frac{2 b E_B I_B}{W_j}$$
 (b:減衰定数) (83)

を考慮すれば、次式を得る。通例、振動問題において減衰の大きさは無次元量である減衰 定数で与えられることが多く、1以下の値を有し、変形量の小さい線形振動下のコンクリー ト材料の場合、数%の値となる。

したがって、式(82)は次式のように変形できる。

式(85)の両辺に Uiを掛けて、x に関し0~1まで積分すれば、

$$\frac{h}{\sum_{B} \mathcal{O}_{B}} \left(\frac{\mathbf{w}_{i}}{i_{j} q(t)} \right)^{2} = \frac{2 h E_{B} I_{B}}{2 h W_{j}} \frac{1}{(t)} \frac{\mathbf{w}_{b}^{2} q_{i}^{2}(t)}{\mathbf{h}_{B} \mathbf{w}_{b}^{2}} \frac{\mathbf{r}_{B} A_{B}}{q_{i}(t) \mathbf{h}_{B} \mathbf{h}_{B}} = 2 h W_{j} \quad (84)$$

$$\frac{\mathbf{w}_{i}^{2} (t) - 2 h W_{i} q_{i}(t) + \mathbf{w}_{i}^{2} q_{i}(t) = -\mathbf{m} \mathbf{u}_{0}(t) \quad (86a)$$

$$\mathbf{m} = \frac{\int_{0}^{t} U_{i}(x) dx}{\int_{0}^{t} U_{i}^{2}(x) dx} \quad (\mathbf{m}) \otimes (\mathbf{k} \otimes \mathbf{b})$$

$$\int_{0}^{t} U_{i} dx = \int_{0}^{t} \sin \left(\frac{i \mathbf{p} x}{l} \right) dx = \frac{l}{i \mathbf{p}} \{1 - (-1)^{i}\} = \begin{cases} \frac{2l}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

$$\mathbf{m} = \begin{cases} \frac{4}{i \mathbf{p}} (i = 1, 3, 5 \cdots) \\ 0 (i = 2, 4, 6 \cdots) \end{cases}$$

ここに、 $S_D(\mathbf{w}_i, \mathbf{b})$:固有円振動数 \mathbf{w}_i ,減衰 \mathbf{b} に対する $\ddot{u}_0(t)$ の変位応答スペクトル i次モードに着目すれば、次式が成立する。 $u_i(x,t) = U_i(x) q_i(t)$ (89)

式(77)より、i次モードのせん断力 Qiは、減衰力を無視すれば、

$$Q_{i} = E_{B}I_{B} \frac{\partial^{3} u_{i}(x,t)}{\partial x^{3}} = E_{B}I_{B} \frac{\partial^{3} U_{i}(x)}{\partial x^{3}} q_{i}(t)$$
(90)

$$\pm \hbar z_{N}$$

$$\frac{\partial^3 U_i(x)}{\partial x^3} = \frac{\partial^3}{\partial x^3} \left\{ \sin\left(\frac{i\mathbf{p}x}{l}\right) \right\} = -\left(\frac{i\mathbf{p}x}{l}\right)^3 \cos\left(\frac{i\mathbf{p}x}{l}\right) \tag{91}$$

式(90)および(91)より、次式を得る。

したがって、i 次モードのせん断力 Qi の時刻歴最大値が、式 (88)および(92)より次式で得 $Q_i = -E_B I_B \left(\frac{i\mathbf{p}\epsilon}{l}\right)^3 \cos\left(\frac{i\mathbf{p}\epsilon}{l}\right) q_i(t)$ (92)

$$M_{av} O = 4 \mathbf{n}^2 E_B I_{B}^{2} \cos(i\mathbf{p} x)_{C} (\mathbf{m} \mathbf{k}) \quad (i = 1, 2, 5, ...)$$
(02)

られる。

柱に作用する軸力(i次モードの寄与)は、式(93)を用い次式で与えられる。

4.4 支点反力式の解釈

$$P_{i} = \left[M_{ax} Q_{i} \right]_{x=0} = \frac{4 \mathbf{p}^{2} E_{B} I_{B}}{l^{3}} i^{2} S_{D}(\mathbf{w}_{i}, \mathbf{b}) \quad (i = 1, 3, 5 \cdot \cdot \cdot) \quad (94)$$
式(94)より、上下震動による単純梁の支点反力の一次モードの寄与は、

$$P = \mathbf{p}^{3} \frac{E_{B} I_{B}}{l^{3}} \mathbf{m} S_{D}(\mathbf{w}_{i}, \mathbf{b}) \quad (95)$$

$$(\mathbf{m} = \frac{4}{\mathbf{p}})$$
ここに、µ_{1}S_{D}(_{1},)は、梁中心の変位であり_{max} と書けば、

$$P = \mathbf{p}^{3} \frac{EI}{l^{3}} \mathbf{d}_{max} = 31.01 \frac{E_{B} I_{B}}{l^{3}} \mathbf{d}_{max} \quad (96)$$

一方、右図に示す三角形分布荷重に対する梁中心の変位 max は、

$$\boldsymbol{d}_{\max} = \frac{ql^4}{960E_BI_B} \left[25\boldsymbol{x} - 40\boldsymbol{x}^3 + 16\boldsymbol{x}^5 \right]_{\boldsymbol{x}=0.5}$$
$$= \frac{ql^3}{960E_BI_B} \left[12.5 - 5 + 0.5 \right]$$
$$= \frac{ql^4}{120E_BI_B} \quad (97)$$

$$\begin{array}{c} q \\ \uparrow P=ql/4 \\ \hline \end{array}$$

1

P=ql/4 より、式(97)は

$$\boldsymbol{d}_{\max} = \frac{l^3}{120E_B I_B} 4P = \frac{l^3}{30E_B I_B}$$
 (98)
すなわち
 $P = 30 \frac{E_B I_B}{l^3} \boldsymbol{d}_{\max}$ (99)

式(99)は式(96)とほとんど等しいことがわかる。すなわち、梁の上下震動の一次モードは、 三角形分布荷重が作用するのに近い荷重状態であることを示している。

4.5 試算例

加速度応答スペクトルと変位応答スペクトルの近似的な関係である、 $S_D=(T_1/(2))^2S_A$ を 考慮すれば、式(94)より一次モードの寄与が、次式で表される。

柱の軸力
$$P = \frac{E_B I_B}{l^3} T_1^2 S_A(T_1, \boldsymbol{b})$$
 (100*a*)
固有円振動数 $\boldsymbol{w}_1 = \sqrt{\frac{E_B I_B}{\boldsymbol{r}_B A_B}} \left(\frac{\boldsymbol{p}}{l}\right)^2 = \sqrt{\frac{E_B I_B l}{W_B}} g\left(\frac{\boldsymbol{p}}{l}\right)^2$ $(T_1 = \frac{2\boldsymbol{p}}{\boldsymbol{w}_1})$ (100*b*)
 $I_B = 0.52m^4$

l = 13m

 $W_{B} = W_{p} \times 4 = 2.8 \times 2.8 \times 12 \times 2.5 \times 4 = 940.8tf$

$$T_1 = 2\mathbf{p} \times \sqrt{\frac{940.8}{2.3 \times 10^6 \times 0.52 \times 13 \times 9.8}} \left(\frac{13}{\mathbf{p}}\right)^2 = 0.267 \text{ sec}$$

(EBの値は c=3000m/s に対応する値を用いている。固有振動数に直すと 3.75Hz となり梁・ 柱系の解析の 3.72Hz とほとんど等しいことがわかる。)

加速度応答スペクトルは、入力地震動として阪神・淡路大震災に際の JMA 神戸における 上下動成分の記録を用いると、S_A(T₁,)=S_A(0.267,0.05)=1200gal=12m/s が得られる。 したがって、柱一本あたりに作用する軸力と軸応力は、

 $P = \frac{2.3 \times 10^6 \times 0.52}{13^3} \times 0.267^2 \times 12 = 465.7 tf$ $\mathbf{s} = \frac{P}{A} = \frac{465.7}{2.8 \times 2.8} = 59 tf / m^2 = 5.9 kgf / cm^2$

橋脚に作用する軸力が、両側の桁によるものであることを考慮すれば、上記軸応力の2 倍となり、11.8kgf/cm²となることがわかる。この値は常時の(自重による)軸応力 19.1kgf/cm²を上回らないが、6割強の値を占めている。

5. まとめ

本論の実施内容と得られた知見をまとめると、以下のようになる。

- (1)RC単柱に及ぼす上下動の影響に関して、上部構造を含む橋脚への衝撃的な上下動に起因する場合と上部構造の橋桁が上下震動すること起因する場合を想定し、前者については
 1 質点・柱系のモデル化により、後者に関しては梁・柱系のモデル化による解析を実施した。
- (2)1 質点・柱系の解析によれば、柱に発生する無次元応力 /(cU₀)が無次元振動数 (= h/c)および柱と上部構造に質量比 m_p/m に依存することが示された。ここに、 :柱の軸 応力、 :RC 柱の密度、U₀:入力速度、 :円振動数、h:柱の高さ、c:RC 柱の縦波

伝播速度である。また、阪神・淡路大震災で被害を受けた典型的な橋脚に対する試算結 果によれば、振動数 20~120Hz、速度振幅 50kine 程度の上下動が作用した場合にひび 割れの可能性が示された。ただし、この値は加速度に換算すると数Gから十数Gに相当 し、現在までの地震観測では実測されたことのないものである。非常に振動数が高いた めに現状の強震計の計測範囲を超えていたとも考えられ、今後このような超高振動数領 域における地震観測データの蓄積が望まれるところである。

- (3)梁・柱系モデルの解析によれば、柱に発生する無次元応力 /(cU₀)が、無次元振動数 、 柱と梁の質量比 Ah/(_BA_BI)および梁と柱の部材剛性比(E_BI_B/I³)/(EA/h)に依存するこ とが示された。また、梁・柱系の固有振動数を試算したところ、一次振動数が梁のみの それとほとんど等しいことがわかり、一次モード付近では梁と柱の相互作用がほとんど ないことが判明した。これは、梁の部材剛性が柱のそれに比べて小さいためである。
- 梁のみのモデル化により、支点反力から柱に作用する軸力を求めた結果、柱の軸力の時刻 歴最大値が梁の部材剛性 E_BI_B/I³ と上下動の変位応答スペクトルに依存することが示さ れた。試算の結果、上下動による増分軸応力は自重による常時圧縮応力を超えないが、 常時圧縮応力の6割強の値となった。

補注 UiUjdx=0(i j)の証明

$$U_i = \sin\left(\frac{i\mathbf{p}x}{l}\right), \quad U_j = \sin\left(\frac{j\mathbf{p}x}{l}\right) \notin \mathcal{U}$$

 $\int_0^l U_i U_j dx = \int_0^l \sin\left(\frac{i\mathbf{p}x}{l}\right) \sin\left(\frac{j\mathbf{p}x}{l}\right) dx$
 $= \int_0^l \frac{1}{2} \left\{ \cos(i-j)\frac{\mathbf{p}x}{l} - \cos(i+j)\frac{\mathbf{p}x}{l} \right\} dx$
 $= \frac{1}{2} \left\{ \frac{l}{\mathbf{p}} \frac{1}{i-j} \left[\sin(i-j)\frac{\mathbf{p}x}{l} \right]_0^l - \frac{l}{\mathbf{p}} \frac{1}{i+j} \left[\sin(i+j)\frac{\mathbf{p}x}{l} \right]_0^l \right\}$
 $= 0$