過大地震を考慮した鉄筋コンクリート橋脚の耐震安全性評価

青戶 拡起^{*1}·吉川 弘道^{*2}

要旨:本論では,変形余裕に対する照査,脆性破壊に対する照査を中心とし,さらに過大地震 に対する安全性の確保を目的とした,耐震安全性を評価する一連のフローを提示するものであ る。供用期間内の発生確率に基づき,想定大地震,過大地震を設定し,前者には構造物の目標 性能と靭性的な変形の保証に関する照査,後者には崩壊の回避を考慮し,従来あまり考慮され なかった過大地震に対する考え方を明確にした。さらに提起した3つの耐震安全性評価基準を 信頼性理論の立場からを検討し,安全性決定のための生起確率の設定が重要となることを指摘 した。

キーワード:耐震安全性,想定大地震,過大地震,塑性変形,せん断余裕度,信頼性

1. はじめに

性能照査型設計の導入に伴い,構造物の耐震設 計にあたっては構造物の重要度や供用期間,建設 地点における地震危険度の評価,さらにはそれら に基づく照査用地震動の設定が行われるように なってきた¹⁾.また,阪神淡路大震災の経験から 想定レベルを超える地震に対しての配慮も必要 となってきた²⁾.そこでこれまでの検討³⁾に加え, 地震動強度を確率的評価に基づき設定し,特に過 大地震に対する配慮を明確にした耐震安全性評 価を行った。

本論における耐震安全性評価の構成は図-1に 示すように,step1:想定地震動(Ground Motion Level)の評価,step2:応答解析手法(Response Analysis),そして step3:目標性能(Target Performance Level)の評価の3つの項目からなる⁴⁾。 それぞれの項目の評価は,様々な指標値やツール を用いて行われ,現行の耐震設計基準や指針^{5),6),7)} からも,それらが伺える。ただし,適用する構造 物の違いなどから詳細に関しては独自の判断(数 値)基準を持っている。

加えて,従来の靭性設計に RC 構造特有の特性 を考慮した Priestley の唱える Capacity Design を取 リ入れ, RC 構造物の耐震設計に応用した計算例 を提示するものであり,将来の Performance Based Design への発展が期待できる。

図-1 耐震安全性評価の構成

2.耐震安全性評価のフロー

ここでは,単柱形式の柱部材を対象とし,想定 した塑性ヒンジの形成を考慮した靭性設計の場 合について一連のフローを提示する。

図 - 2,3 に概念図とフローを示す。図中の丸数 字 ~ は安全性評価に用いる指標値, A~E は その算定に必要な仮定または算定式である。

- *1 武蔵工業大学大学院 工学研究科土木工学専攻 修士(工学)(正会員)
- *2 武蔵工業大学教授 工学部土木工学科 工博(正会員)

3.1 想定地震動 (Ground Motion Level)

国内の基準・指針における想定大地震の記述

(1) 発生確率による地震動の設定:指標

定

の算

いずれも3段階の地震動強度レベルを想定して いるが,最も強度の大きな地震に関してはその解 釈が異なる。海洋型の地震とそれより強度の大き いものとして内陸活断層を想定するもの(JRA, AIJ),大地震としての平均地震とその評価誤差を 加えたもの (JSCE) とに大別できる。

加えて,地震危険度解析の結果よりある地点に 来襲する地震強度と構造物供用期間中の発生頻 度(発生確率)は密接な関係がある⁸⁾。従って, 本論では供用期間中の発生確率に基づいて3段階 の地震動レベル,L1(中小地震),L2(想定大地 震), L3(過大地震)を設定した(表-2)。

Level	L1	L2 (想定大地震)	L3 (過大地震)	
発生確率 F (Y,50)	50%	15%	5%	
最大加速度 $lpha_{g0}(Gal)$	230	430	690	
再現期間 T _R (year)	70	300	1000	
A I				

表-2 本論における地震動レベルの設定 (供用期間 $t = 50 \oplus 1^{5}$)

(2)地震強度の設定:指標 , の算定

ある地域における地震発生モデルをポアソン 過程と考え,注目点においてY以上の地震または 地震動の平均年間発生率を v_Y とする。t年間に Y以上の地震または地震動が発生する確率F(Y,t)は式 (1) となる⁹.

$$F(Y,t) = 1 - e^{-v_Y \cdot t}$$
(1)

従って,構造物の供用期間中*t*年における地震発 生確率 F (Y,t) を定め, 想定すべき地震動の地震 発生率 レy が定まる.その地震発生率 レy と地震ハザ

ード曲線から想定地震強度(基盤における最大加 速度α₂₀)を求める¹⁰⁾. 図 - 4 に本解析で用いた地 震ハザード曲線 5)を,それから算定される各レベ ルの地震動強度と,ポアソン過程における平均再 現期間 T_{R} (=1 / v_{Y})を表 - 2 に併記した.

3.2 応答解析手法 (Response Analysis)

(1)構造形式・諸元:指標の算定

次の対象 RC 構造物の静的・動的特性を算定す る必要がある。すなわち、

構造物の想定破壊形式とそのときの荷重変形 曲線($P \sim \delta$ 関係)

諸耐荷力(降伏耐力,終局耐力),諸変位(降 (伏耐力時,終局耐力時),せん断劣化曲線

本来は,構造物の形式や諸元によりその動特性, 耐荷性能が異なるため,図-3に示すようにそれ らは所定の安全性が確保されるよう,繰り返し計 算により求解されるものである。ここでは表-3 に示すような構造物¹¹⁾を仮定し,後述する解析例 とする。同表に示す値は設計基準強度による計算 値である。

形式	RC 製矩形単柱式橋脚		
降伏耐力 V _{my} (MN)	2.14		
終局耐力 V _{mu} (MN)	2.14		
降伏変位 $\delta_y(cm)$	2.36		
終局変位 $\delta_{mu}(cm)$	8.92		
初期せん断耐力	コンクリート負担分	4.25	
$V_{y0}(tf) = V_{c0} + V_{s}$	せん断補強筋負担分	0.80	
等価重量 W(MN)	4.00		
固有周期 T(sec)	0.58		
靭性率µmu	3.78		
この橋脚は道路橋示方書による地震時保有耐力の照査は 満足していない。(タイプ2で P _a /(k _{he} ・W)=0.58)			

表 - 3 解析対象橋脚(設計基準強度計算值)

(2)荷重の設定:指標の算定

3.1より工学基盤面での最大加速度 *α*g0(震度 kg0)が与えられる。荷重指標としては,構造物の 固有周期付近の地表面における平均的な加速度 応答スペクトル値 なにより表現し,以下の式によ り地盤増幅の効果を考慮する¹²⁾。

$$\alpha_{\rm c} = 19.44 \,\alpha_{\rm g0}^{0.6523} \tag{2}$$

(3)塑性応答量の設定:指標の算定

構造物の塑性応答量は,通例非線形動的応答解 析によって求解されるが,設計時にはいくつかの 簡易的な方策でこれを回避することが多い。例え ば,よく知られたものにエネルギー一定則や,経 験的に同定された塑性応答評価式がある。本論で は,式(3)を用いて最大塑性応答を評価した¹³⁾。

$$\mu_{\text{resp}} = \frac{0.7}{T} \left(\frac{\alpha_{\text{c}} / \text{g}}{V_{\text{my}} / W} \right) + \left(1 - \frac{0.7}{T} \right)$$
(3)

上記のような塑性応答評価式は,構造物特性と 入力地震動の性質に関して適用上の制約条件お よび算定精度に対する配慮が必要であるが¹⁴⁾,弾 性応答特性 *α*c から塑性変形量 *μ*resp を容易に求め ることができ,設計段階では多用される。

3.3 耐震安全性の評価方法:指標 7 の算定

- I. 想定大地震応答時の目標性能の照査
- Ⅱ. 想定大地震応答時の靭性的な変形の保証(脆 性破壊に対する余裕度)の照査

Ⅲ. 過大地震応答時の崩壊回避の照査

の三本立てとする (triple seismic criteria) (図 2 再度参照)。

I.目標性能の照査では,想定大地震応答時の 最大塑性変形量 δ_{resp} が設計変位 δ_{mu}^{d} に達しないこ とをチェックする。目標性能に応じた設計変位 $\delta_{mu}^{d} (= \delta_{mu} / \beta_{I}) (margin : \beta_{I} > 1) を定め,崩壊に$ $対する安全度を<math>\phi_{disp} = \delta_{resp} / \delta_{mu}$ のように定義し, これを用いて以下のように照査する。

$$\phi_{\rm disp} \quad 1/\beta_{\rm I} \ (\ < 1\) \tag{4}$$

II. 脆性破壊(せん断破壊)に対する余裕度の 照査では,上記の地震応答時($\delta = \delta_{resp} \delta_{mu}^{d}$)に せん断耐力 V_{y1} と曲げ耐力の余裕度を確保し,靭 性的な変形を保証する¹⁵⁾。せん断余裕度を ϕ_{shr1} = V_{y1} / V_{mu} (margin: $\beta_{II} > 1$)のように定義し,こ れを用いて以下のように照査する。

$$\phi_{\rm shr1} \quad \beta_{\rm II} \ (>1) \tag{5}$$

(6a)

Ⅲ. 想定した地震より過大な変形を生じても崩壊しないことを確認する。終局時のせん断耐力
 *V*_{y2}を用いてせん断余裕度をφ_{shr2} = *V*_{y2} / *V*_{mu}と定義し,次のように照査する。

$$\phi_{\rm disp}$$
 1.0

 $\phi_{\rm shr2}$

(6b)

ここで, V_{y1} は(想定した大地震動による)大 変形繰返し荷重を受けたときの劣化したせん断 耐力, V_{y2} は終局変形時のせん断耐力であり,そ の劣化度合いの評価法(せん断耐力劣化曲線の設 定)が主要であり,たとえば文献 15),16),17)に詳 しい。

変位に基づく設計法(Displacement-based Design)において,損傷状態は変位によって規定 される。従って塑性変位に対する安全性 ϕ_{disp} によ る評価方法は,これを具体的に提案するののであ る。加えて,靭性的な変形(ductile mode of deformation)を保証する必要があり,RC構造特 有の脆性破壊(non-ductile failure)の回避を考慮 した Capacity Designを導入している。すなわち, せん断余裕度 ϕ_{shr1} , ϕ_{shr2} を定義し,終局に対する 変形余裕(margin) β_1 ,および靭性的な変形を保 証する安全率 β_1 により照査するものである。

以上,大地震を対象とした耐震安全性評価は表 -4にようにまとめられる。

	L2	L3		
	想定大地震	過大地震		
$\phi_{\rm disp}$	$\phi_{\rm disp}$ 1/ $\beta_{\rm I}$	<i>\ \ \ \ d</i> isp 1.0	$\phi_{ m disp} = \delta_{ m resp} / \delta_{ m mu}$	
$\phi_{\rm shr1}$	$\phi_{ m shr1}$ $eta_{ m II}$	-	$\phi_{\rm shr1} = V_{\rm y1} / V_{\rm mu}$	
$\phi_{\rm shr2}$	-	<i>\(\phi_{\shr2}\)</i> 1.0	$\phi_{\rm shr2} = V_{\rm y2} / V_{\rm mu}$	
$\beta_{\rm I} > 1$, $\beta_{\rm II} > 1$				

表 - 4 大地震に対する安全性評価

4. RC 橋脚の耐震安全性評価計算例

4.1確定論的評価による解析

表 - 3 に示した RC 橋脚を対象とし,その耐震 安全性評価計算例を図 - 5 に示す。コンクリート 負担分のせん断耐力の劣化評価は Priestley らの提 案式¹⁵⁾を用い,変形量の増大に伴い低減させた。 設定した安全率βは FEMA-273 より,性能レベ ル: Life Safety に対応する基準 1.33(=1/0.75), β_Π は Priestley らの Capacity design の提案値 1.18(=1 / 0.85)を準用した。

4.2 信頼性を考慮した解析

(1) 確率量の定義

種に材料強度の不確定性に起因する確率量と して,諸耐力(降伏耐力,終局耐力,初期せん断 耐力)と靭性率を考慮し,その他は確定量とした。 諸確率量(確率変数)は表-5に示す値を用いた 正規分布と仮定した。 本来,各確率量は材料強度のばらつきに加え, 耐力および変形能算定式の精度に影響され,さら に確率変数間の相関を考慮する必要があるが,よ り厳密な考案は今後の課題としたい。今回は,確 率変数は完全独立として扱った。

表-5確率量の定義

確率変数	平均值	変動係数
降伏耐力 V _{my} (MN)	2.14	10%
終局耐力 V _{mu} (MN)	2.14	10%
コンクリート負担分 V _{c0} (MN)	4.25	15%
せん断補強筋負担分 V _s (MN)	0.80	5%
靭性率 μ_{mu}	3.78	10%

(2) モンテカルロシミュレーションによる解析

サンプル数を 10^4 としたモンテカルロシミュレ ーション(MCS)を実施し,その計算結果を**図**-7 に示す。靭性率 μ_{mu} と設計変位に相当する設計塑 性率 μ_{mu}^{d} に対し,それぞれ L2 地震における応答 μ_{resp} (L2)と過大地震に対する応答 μ_{resp} (L3)の 応答値の頻度分布を示したものである。

図 - 7 MCS による計算結果

塑性変形の安全性に着目すると,中央値を比較 すれば,想定大地震時,過大地震時ともほぼ安全 性指標 ϕ_{disp} 1 / β_{I} ($\mu_{resp}(L2)$ μ_{mu}^{d}), ϕ_{disp} 1 ($\mu_{resp}(L3)$ μ_{mu})を満足しており,過大地震に対 する安全性も確保されていることがわかる。

次に,上記 MCS による解析結果から,耐震安 全性基準(式(4)~(6))を満足する確率(生起確率) を表-6に示した。同表をみると,過大地震にお けるせん断破壊(ϕ_{shr2} 1.0)に対する安全度の生 起確率が,最も低い値となっていることがわかる。 確定論的な安全性評価では安全となるが,ここで はそれぞれの安全度のもつ信頼性が異なる。さら には,安全性決定のための生起確率の設定が重要 となる。

L2:想定大地震		L3:過大地震		
$\phi_{\rm disp}$	1 / β _I	0.961	$\phi_{\rm disp}$ 1	0.935

0.999

表-6 安全性基準の生起確率

 $\phi_{\rm shr2}$ 1

0.822

5.まとめ

 $\phi_{
m shr1}$ $\beta_{
m II}$

供用期間内の発生確率に基づき,想定大地震, 過大地震を設定し,前者に対し構造物の目標性能 と脆性破壊に対する余裕の照査を,後者に対し脆 性崩壊の回避を考慮する,耐震安全性評価のフロ ーならびに計算例を提示した。

信頼性に基づく耐震安全性の評価では,各安全 性基準の信頼性を確保するとともに,安全性決定 のための生起確率の設定が課題である。

参考文献

- 1)土木学会地震工学委員会レベル2地震動研究小 委員会:レベル2設計地震動現状と展望シンポジ ウム講演概要集レベル2地震動研究委員会の 活動報告,土木学会,1997.7
- 2)過大繰返し地震力を受けるコンクリート部材の塑 性域劣化性状研究委員会:塑性域の繰返し劣化 性状」に関するシンポジウム委員会報告書・論文 集,日本コンクリート工学協会,pp.1-51,1998.8
- 3)吉川 弘道, 青戸 拡起, 岩本 篤:RC 橋脚の耐 震性能評価手法に関する考察, コンクリート構造 系の安全性評価研究委員会報告書・論文集, pp.419-428, 1999.9
- 4)Hamburger, R. O. : Performance objectives, Seismic Design Methodologies for the Next Generation of Codes , Fajfar & Krawinkler (eds), Balkema, pp.33-42, 1997
- 5) 土木学会 エネルギー土木委員会 LNG 地下タン ク設計合理化小委員会:LNG 地下タンク躯体の

構造性能照查指針, 土木学会, 1999.12

- 6)日本建築学会:鉄筋コンクリート構造物の靭性保 証型耐震設計指針(案)・同解説, 1997.7
- 7)日本道路協会:道路橋示方書·同解説 V 耐震設 計編, 1996.12
- Watabe, M. and Tohdo, M.: Seismic hazard analysis for design earthquakes loads, Computer Analysis and Design of Earthquake Resistant Structures A Handbook D. E. Beskos & S. A. Anagnostopoulos (Editors), Computational Mechanics Publications, pp.241-269,1997
- 9)土木学会:構造物の安全性・信頼性,土木学会, pp.101-116, 1976.10
- 10)安中 正:確率論的地震危険度解析に基づく設計用入力地震動の設定方法,第25回地震工学研究発表会講演論文集,pp.37-40,1999.7
- 日本道路協会:既設道路橋の耐震補強に関する 参考資料, pp.2.1-2.32
- 12)佐藤一郎,平川倫生,神田順:活断層を考慮
 した地震危険度解析と最適信頼性への応用,第
 10回日本地震工学シンポジウム,pp.145-160,1998
- 13)Paulay, T., Priestley, M. J. N. : Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley-Interscience, pp.71-79, 1992
- 14)青戸 拡起,吉川 弘道:弾塑性系の荷重低減係
 数評価式に関する検討,土木学会第54回年次
 学術講演会概要集,第V部,pp.480-481,1999.9
- 15) Priestley, M. J. N., Seible, F. and Calvi, G. M.: Seismic design and Retrofit of Brides, 1995.12
- 16)池谷 和之,吉川 弘道,宮城 敏明,服部 尚道:
 鉄筋コンクリート柱の破壊形式の判定と靱性評価, コンクリート工学年次論文報告集,第20巻,第3 号,pp.259-264,1998.6
- 17) Yoshikawa, Hiromichi and Miyagi, Toshiaki: Ductility and Failure modes of Single Reinforced Concrete Columns, JCI-C51E Seminar on Post-Peak Behavior of RC Structures Subjected to Seismic Loads Volume2, pp.229-224, 1999. 11