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Abstract

The eigenanalysis of the localization tensor is essential for the analytical treatment
of spatial discontinuities due to strain localization. The eigensolution character-
izes the direction of the spatial discontinuity surface and the mode of localization,
but not the magnitude of the jump in the strain rate. This paper describes the
mathematical developments for detecting the onset of discontinuous bifurcation,
and in addition it addresses the post-bifurcation analysis of elastoplastic solids.
To this end constitutive expressions will be developed which relate the stress rate
to the strain rate on both sides of the spatial discontinuity leading to a discussion
of plastic/plastic vs. elastic/plastic bifurcation based on the eigenanalysis of a
generalized localization tensor.
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analysis, Discontinuous Bifurcation, Constitutive Relation.

1 Introduction

It has been widely accepted that quasi-brittle and ductile materials exhibit spa-
tial discontinuities in the form of localization (Napar (1950), HirrL (1958)). The
formation of cracks and shear bands in cementitious and granular materials, as
well as in metals are typical examples of localized failure mechanisms.

Many researchers have been involved with this fascinating work and con-
tributed to much progress in localization analysis. Their contributions may be
divided into the construction of localization conditions “in the small”, at the con-
stitutive level (RUDNICKI AND RICE (1975), WILLAM AND SoBH (1987), BORRE AND
MaIER (1989), BiconI AND HUECKEL (1991), RUNESSON ET AL. (1991), OTTOSEN
AND RuNEssoN (1991)), and their finite element applications to reproduce strain
localization “in the large”, at the level of the boundary value problem (OrTiz
ET AL. (1987), DE BorsT (1989), STEINMANN AND WILLAM (19914a), (1991B)).
At the same time, it is important to establish a consistent failure theory which
connects distributed failure on the continuum level with localized failure and dis-
crete failure on the discontinuum level (WiLLaM AND ETsE (1990), WILLAM ET
AL. (1993)).



At the beginning of the present paper, the mathematical formulation of local-
ization utilizing the localization tensor is reviewed. This well-established represen-
tation has usually been directed toward detecting the onset of strain localization
as a condition of discontinuous bifurcation within the solid. To this end, it is
fundamental to describe bifurcation phenomena via the second-order localization
tensor which determines the orientation of the spatial discontinuity and the rela-
tive motion of the discontinuity, i.e. the mode of localized failure.

In the second point of this paper, we will extend the localization condition
to capture also the post-bifurcation behavior. This leads to the eigenanalysis
of the generalized localization tensor which permits quantitative discussion of
plastic/plastic bifurcation vs. elastic/plastic bifurcation when different tangential
constitutive descriptions govern the material behavior on both sides of the spatial
discontinuity. The sensitivity of localization initiation with regard to variation of
plastic properties will be investigated through perturbation analysis.

2 Review of Localization Criteria

2.1 Kinematics and constitutive law of discontinuity

Let us consider the homogeneously deformed solid subjected to quasi-static in-
crements of deformation. In the bifurcated state, when the rate of displacement
field i is assumed to be continuous, the rate of displacement gradient field Vu
exhibits a jump across the discontinuity surface. This basic assumption describes
a C%continuous motion where

[ = &* — &~ =0, [Vi]]= Vit —Va~ #£0 (1)

The superscripts “ + ”and “ —” denote the values at the plus and minus side of
the discontinuity surface, and the square brackets express the relative difference
of a quantity across the discontinuity (Fig. 1).

The Maxwell compatibility condition requires that the jump of the displace-
ment gradient has the form '

(Vi) =M ®N | (2)

where the unit normal vector N defines the orientation of the discontinuity surface
and the unit vector M designates the direction of localized motion. It should be
noted that the jump in the velocity gradient is a second order tensor of rank one.
The indeterminate scalar 4 denotes the amplitude of the jump in the velocity
gradient, which is related to the wave speed in acoustic analysis.

The kinematic jump condition for the strain rate [[€]] is expressed as the sym-
metric part of the jump in the velocity gradient.

[l = Vil + (Va7 = IMeN+NeM) =iMaNr  (3)



The kinematics of deformation across the discontinuity surface is thus represented
by means of two vectors M, N and the scalar 4. Here, tensorial notation x ® y
indicates the tensor product of the vectors x and y.

At the onset of the localization, the material response on both sides of the
discontinuity surface is assumed to be in the plastic state. Hence, the constitutive
characteristic for both sides are normally expressed by the same elastoplastic
representation,

6t =E.,:ét, 6" =E,: ¢ - (4)

E., = E. —E, denotes the elastoplastic tangent operator, comprised of the elastic
stiffness E, and the rank one modification E, due to plasticity. E., is assumed
to be identical on both sides of the discontinuity according to the concept of
plastic/plastic bifurcation.

The discontinuity surface also causes a jump of the stress rate, denoted by
[[6]] = 67 — ~. This stress jump is again related to the strain jump by means
of the elastoplastic tangential operator,

[[6]] = Eep : [[€]] B | (5)
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Fig. 1 Formation of Discontinuity Surface with Directional Vectors M and N.

2.2 Condition for onset of localization
Within the framework of discontinuity analysis in elastoplastic solids, the so-called



localization operator Q., is defined by the second-order tensor:
er:N'ECP'N (6)

This second order tensor is identical with the characteristic tensor for discontin-
uous bifurcation or localization tensor. Although the stress jump appears across
the discontinuity surface, the balance of linear momentum on the surface requires
that the traction vector t remains continuous i.e.,

([t = N-[[6]] = 0 (7)
Substitution of Egs. (5) and (2) into the above equation leads to
Y(N-E4-N)-M=4Q,,-M=0 (8)

This condition may be satisfied by the critical eigenvector M for a given dis-
continuity N in the case of localization. Localization initiates when a nontrivial
solution of Eq. (8) exists with the condition that ¥ # 0 and M # 0. This
necessitates that the localization tensor is singular, i.e.,

det(er) =0 (9)

Otherwise, the magnitude of the strain jump 4 must vanish: if det(Q.,) # 0, then
4 = 0. We conclude that the following conditions must hold for strain localization:

det(Q,,) = 0 = 4 #0, [[(]] #0 <= localization
det(Q,,) # 0 = 4=0, [[(]]=0 <= no localization (10)

Once the direction of discontinuity surface is determined, the corresponding vector
M is calculated as the critical eigenvector of the localization tensor. The singular-
ity condition of Q,, is also called loss of ellipticity of the equilibrium equations, in
analogy to the usual classification of the second order partial differential equation.
The significance of conditions for discontinuous bifurcation may be understood in
the following way. If a discontinuity surface was formed, this requires that the
localization tensor must be singular for a particular direction N.;;. The relative
motion across the discontinuity surface must be prescribed by the corresponding
eigenvector M.

It is of importance to note that the statement so far is a pointwise argument
for bifurcation of a material particle at the constitutive level. At the structural
or element level, on the other hand, the localization condition must be dealt
within a boundary value problem. This indicates that localization features such
as shear band formation is one of the possible stationary states under the restricted
kinematic compatibility conditions as well as the prescribed boundary conditions.
We should emphasize that localization in the small does not necessarily lead to
* the failure of the structural element or the entire structure (Fig. 2).



This argument is purely deterministic concerning the formation of localized
failure in a structure or an element. Clearly, initial imperfections and probabilistic
scatter of material properties throughout the element or the structure play an
important role to trigger formation of a spatial discontinuity. This is analogous
to the classical instability arguments for elastic/inelastic buckling.
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Fig. 2 Characteristics of Inelastic Behavior at Material and Element Level;
Fundamental Failure Criteria during Deformation History

3 Extension to Post-Bifurcation Analysis

3.1 Different constitutive assumptions on each side of the discontinuity
Here, we try to expand the mathematical description of bifurcation beyond the
onset of strain localization. To this end, this section will include identification of
the magnitude of the strain rate jump, the kinematic relation of strain tensors on



both sides of the discontinuity, and the construction of constitutive representations
between strain and stress tensors across the discontinuity surface.

The argument starts with the elastoplastic constitutive expressions which differ
now on each side of the discontinuity surface (see Fig. 1) in contrast to Eq. (4).

Positive Side: ¢t = Ef :ét, Ef =E,(o")
Negative Side: 6~ = E_ :€", E_ =E,(o") (11)

in which E;';, and E_, denote the elastoplastic tangential operators on the positive
and negative side of the discontinuity surface. This condition can readily be ap-
plied to the case of elastic/plastic bifurcation when we consider the special case
Ejp — E,p and E_, — E.. Elastic/plastic bifurcation signifies that the material
on one side of discontinuity surface unloads elastically, while the material on the
other side loads plastically.

3.2 Constitutive expression analogous to plasticity
Now, let us consider the development of a constitutive representation of localiza-
tion in the post-bifurcation regime analogous to classical plasticity theory.

The derivation for the bifurcated material response begins with three postu-
lates following the well-known flow theory for rate-independent elastoplasticity.

1. Additive decomposition of strain rate: e = &~ + [[€]]’
This decomposition should be considered in such a way that the strain rate tensor
€~ is the standard strain rate corresponding to the elastic strain rate and é* is
the total strain rate with the jump of the strain rate [[€]] being regarded as the
plastic strain rate.

2. Flow rule describing evolution of localized strain jump: [[€]] = 4[M ® NJ°
When 4 # 0 then localization is in effect and when 4 = 0 then no localization or
elastic unloading takes place.

3. Yield condition for stress jump: F =M - [[t]] = [M@N]*: [[¢]] =0

This corresponds to a scalar form of the traction balance across an arbitrary
surface according to Cauchy.

- It should be noted that the flow rule and the yield condition for discontinuous
bifurcation render d*Wj,. = 1[[]] : [[€]] = 0. This states that the second order
work of the stress and strain rate jumps must vanish for the formation of a spatial
discontinuity.

Introducing the relation of stress rate jump and strain rate jump

(6] = 6% -6 =EL:[[é]l - [[E]]: &
(6] = 6% -6~ =Eg: [[€]] - [[B]] : € (12)

into the yield condition, the localization multipliers are readily determined in



terms of the strain rate on either side of the discontinuity, yielding

(N@M]* : [[E,]]: €= _ [NiM][[EFlléia

1

M-Q;,-M M,QE M,
5 - N@M*: [[B,]] : ¢ _ [N:M;P[IELulléh 13)
M-Q,-M M,Q3™ M,

in which

[E,]] = EJ-E; =E, -E}
M-Qf-M = [M@NJ]:E}l:[NoMJ
M-Q,-M = [M@N]":E_:[NoM] (14)

This analytical consequence regarding 4 provides the necessary information
about the nature of the strain rate jump, which leads to a more fundamental
understanding of the physical meaning of the discontinuity. If the tangential
operators in both sides are the same, E;, = Ejp, then the value of ¥ is equal to
zero until the localization tensor is singular. Right at the moment of the onset of
bifurcation, 4 turns out to be indeterminate. This statement corresponds to the
previous equation (8) signaling onset of strain localization. On the other hand,
when discontinuities within the body develop so that the two tangential operators
deviate, then E_, # EL.

It also follows that the three strain rate tensors on both sides of the disconti-
nuity é*, €~ and [[€]] are related as follows:

[el=@:67, [El=w:¢& (15)

In this notation

M@N]*®[NeM] : [E]]

@ = M-Q. M ,
_ [M@N]@[N®M]: [[E]
v = QM (16)

Both of @ and ¥ are non-dimensional fourth-order tensors which provide the
fundamental characteristics of discontinous bifurcation. Finally, the constitutive
representations are

E} : et
. _ [EL: |
T {E:f,:(nw):e- (17)

and similarly

. E; : €
7 {E" (L —0): &t (18)

ep
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In view of each pair of these equations, it is obvious that two different strain
rates are provided for the single stress rate as long as the tensors @ and ¥ are de-
fined. This is a fundamental aspect for the loss of uniqueness and post-bifurcation
state due to the existence of a spatial discontinuity in the deformations. Fig. 3
schematically depicts the stress-strain behavior involving the bifurcation path and
the relationship between the two strain tensors. - :

fundamental path

bifurcation path -
0 : P -c €

\ /|1 P-P bifurcation
./LJ1 /

€ R 1 O L+3>0

& 1
>
& 1,+®<0

E-P bifurcation

initial-yield bifurcation
f(o)=0 det(Q,)=0

Fig. 3 Schematic Description of Fundamental/Bifurcation Paths (upper part);
Relationship between Two Strain Tensors across Discontinuity (lower part)

When we assume the case of elastic/plastic bifurcation, for example, the stress
rate on the elastic side may be related to the strain rate on the positive side as

E.:[M@N]®[NoM] : E}

o = BT MeNp B NeMP 1 E (19)

This shows that the strain rate tensor on the plastic side (positive side in this case)
is related to the stress tensor on the surrounding elastic side by a constitutive
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expression which is analogous to that of associated elastoplasticity,

E.:n®@n:E,

r = (E, — e ={E, -
o= Bp):é={ Hy+n:E.:n

}:é (20)

where the scalar quantity H, defines the plastic modulus. Making comparison
with each other, one may realize that the second order tensor [M ® NJ° of the
discontinuity corresponds to the gradient of the yield function n in plasticity, and
that the description for the bifurcated material has no counterpart with the plastic
modulus.

4 Eigenanalysis of the Localization Tensor

In this section, we investigate the condition for discontinuous bifurcation based
on conventional elastoplasticity through an analytical method. To this end, we
first establish the generalized characteristic equation for the localization tensor in
order to detect the bifurcation mode as well as the non-bifurcation mode. Then,
analytic solutions of the eigenvalue problem are found and discussed, taking into
consideration again different tangential operators on opposite sides. Furthermore,
a perturbation analysis is carried out to examine the variation of the material
properties.

4.1 Generalized characteristic equation and eigenanalysis

Let us expand the eigenvalue analysis allowing for different tangential operators
on both sides of the discontinuity which are no longer identical. The discussion
begins from Eq. (12), leading to

5Qf, -M=N-[E]]: &, 4Qg-M=N-[[E,]: & (21)

At the instance of initial bifurcation, since [[E,]] = 0, the above equations turn
out to be ¥Q,, - M = 0, which is the original expression of the characteristic
equation. Here, the difference of tangential operators denoted by [[E,]] can be
developed as follows.

[E,]] = E;‘ —E] =[[H]]JEc :m®n:E, (22)
in which the scalar quantity [[H,)] is defined [[H,]] = H;+n1:E=:l’p - _H;+n1:Ee:m
Then, we have

QLM _ 1Qp M ,
n: Ee . é-— - [[HP]]N Ee ¢ m, n: Ee . é+ - [[HP]]N EC m (23)

in which m provides the direction of plastic deformation given as the gradient of
potential surface and n the outward normal to the yield function. When m =n
is assumed, this reduces to the associated flow theory. The scalar value H, is the
plastic modulus expressing hardening and softening.
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Equating two expressions in Eq. (23), one attains the equation in the form

:E.:€
QL-M = )Q-M, where A= 2—%——? (24)
This can be regarded as the characteristic equation of a generalized eigenproblem
in which X denotes the eigenvalue and M the corresponding eigenvector. When
one assumes Q_, = Q,, it reduces to the case which corresponds to solution by
RUNESSON, OTTOSEN AND PERIC (1991).

Moreover, we would like to investigate the property of the eigenvalue A. In
order to eliminate the strain rate tensors in this expression , we again make use

of _ MQ@N]*® [N @M]*: [[E,]]

e~ =L, —W):et, ¥
€ ( 4 ) € ? M . Q;-p . M (25)
Then, Eq. (25) yields the critical eigenvalue \*.
:E.: - et ‘B, W et
3 n:E :(Li—-P):e ,_n ¥:e (26)

n:E, :éet - n:E, :€e"

where A* is the eigenvalue associated with bifurcation. The case of ¥ = 0, indi-
cating the non-bifurcation mode, the above equation reduces to A = 1.

Since the critical eigenvector M in the bifurcated mode is given as M oc Q.-b,
the critical eigenvalue can be finally represented as

aQ:'b
v oo po e MeM)-b 1T Thf
M-Q,-M 1— aQ’'b

Hg +c

(27)

Here, we introduced two vectors a and b, and the scalar cas a = n:E,-N, b=
N-E.:m, c=n:E,:m, which simplify, as an example, the notation of Q,

in such a way that Q, = N-E,-N = %—ﬁ%. Full formulation process for these

expressions may be referred in Yosaikawa (1993).

4.2 Critical hardening modulus for bifurcation
In addition to the derivation in the previous section, we reach the same result
for the critical eigenvalue A\* in Eq. (27) for the discontinuous bifurcation through
alternative methods (Yosnikawa(1993)). Therefore, we describes the A\* = 0
condition in terms of the critical plastic modulus, which indicates the condition
for singularity of Qj;. This critical plastic modulus reads

Hf=a-Q'-b—c or H, =-c (28)
Likewise, one can also state that
H =a-Q'-b-c or Hf=-c (29)

P
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for Q;,, which can be derived from another characteristic equation Q;, - M =
XQZt - M.

The first equation in each of Eqs. (28) and (29) that Hrt=a-Q;'-b—c
is identical to the result initially presented by Rice (1976) , and agrees with
the eigenanalysis made by RuNESSON ET AL. (1991) based on the characteristic
equation Q,, - M = AQ, - M . Thus, this modulus H"* is termed as a standard
critical plastic modulus . The second condition in these equations H, = —¢ =
—n : E, : m limits the elastoplastic tangential operator.

In order to distinguish the two bifurcation configurations, we can recast the
eigenvalues for each case as follows.

For Plastic/Plastic Bifurcation: H:' = Hp‘ =H, =
o= { 1 for Hy#a-Q;'-b—g¢,

PP indeterminate for H,=a-Q;'-b—c (30)
For Elastic/Plastic Bifurcation: H} = H,,H; =oc0 =

IR a-Q'-b, n:E.-N-Q' N-E.:m

Yo = 1= )=t H,+n:E.:m (3

where A», denotes the eigenvalue pertinent to p-p bifurcation, while A7, that
for e-p bifurcation.

Fig. 4 illustrates the variation of eigenvalue A as a function of two plastic
moduli H; and H;. This figure especially depicts the p-p bifurcation because
the eigenvalue for H; — oo is far out side the figure. Fig. 5 indicates a comparison
of p-p bifurcation and e-p bifurcation. The important finding is that the critical
plastic modulus H™ for A* = 0 is identical to each bifurcation configuration.

In these calculations, it is simply assumed that a- Q. b = 3 and ¢ = 2 so
that HY # — 1 in order to simplify the numerical calculation. Hence, it means
that this assumption is made regardless of the type of yield surfaces and potential
surfaces, supposing that both of p-p and e-p bifurcation possess the same critical
direction of discontinuity surface, i.e. N = N°rit,
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Eigenvalue of Acoustic Tensor

Fig. 4 Surface of Eigenvalue A* Expressed as a Function of
Plastic Moduli HY and H, on Each Side.
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Fig. 5 Variation of Eigenvalue A* by Plastic Modulus H,:
Comparison of Plastic/Plastic and Elastic/Plastic Bifurcation
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4.3 Perturbation analysis of plastic/plastic bifurcation

Next, we will investigate the effect of variations of plastic moduli across the dis-
continuity surface at the onset of bifurcation. This analysis can be carried out
by imposing small differences of two plastic moduli on the bifurcation mode in
order to see how the critical hardening modulus is influenced by this difference.
This investigation may be regarded as a perturbation analysis with regard to the
plastic property of the material across the discontinuity surface which initiates
when A* = 0 is fulfilled. As an example of perturbation of the plastic properties
on both sides of the discontinuity, we suppose

Hi=(1-o)H, H; =(1+a)H, (32)

in which H, denotes the mean value of the plastic modulus at the material particle
under consideration, and a expresses the degree of perturbation of the plastic
moduli on both sides which is assumed to vary between 0 to 1.

Shown in Fig. 6 are again the comparison of p-p bifurcation vs. e-p bifurcation,
when it is assumed that a = 0.005,0.05,0.5. It is found that the critical moduli
for p-p bifurcation are larger than that of e-p bifurcation which is identical to the
standard critical value of plastic modulus. It depends on the difference of the two
moduli, given by the perturbation factor of a. Consequently, we note that the

bigger value of the plastic modulus implies that p-p bifurcation is initiated earlier
than e-p bifurcation.

P-P Bifurcation v.s. E-P Bifurcation
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Fig. 6 Variation of Eigenvalue A* by Plastic Modulus Hp;
Perturbation Analysis of Plastic/Plastic Bifurcation with Assumption that
- H} =(1-a)H,, H; =(1+a)H,: Case for a = 0.005,0.05,0.5
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5 Concluding Remarks

The present study describes mathematical formulations and their physical inter-
pretation about fundamental aspects of failure mechanism and strain localization.
Localization is regarded as a bifurcation problem which can be argued at a con-
stitutive level.

The first point of this paper is that stress/strain relations and constraints of
two strain tensors across the discontinuity surface can be represented in terms of
non-dimensional fourth order tensors @ or ¥, which are characterized by vectors
M, N and the difference of elastoplastic tangential operators on both sides. These
expressions describe the bifurcated path as well as the fundamental path at the
constitutive level after the onset of bifurcation.

The second point is the eigenanalysis of the localization tensor based on the
generalized characteristic equation in order to identify the bifurcation mode. The
analytic solution of the critical eigenvalue and the corresponding critical value of
plastic modulus lead to the discussion of plastic/plastic vs. elastic/plastic bifur-
cation, and perturbation analysis assigning slight differences among the plastic
moduli across the discontinuity. One of the interesting findings is that the critical
plastic modulus for plastic/plastic bifurcation is larger than that for elastic/plastic
bifurcation, depending on how much the two plastic hardening/softening moduli
differ from each other.

Some further discussion will be made as a next step to extends these concepts
to the structural level considering a boundary value problem, assuming a volume
fraction of localization region in a representative volume.
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