鉄筋コンクリート橋脚に対する地震リスク評価手法の適用

Application of Seismic Risk Assessment to Single Reinforced Concrete Pier

遠藤 昭彦 ,吉川 弘道

Akihiko Endo, Hiromichi Yoshikawa

工修,武蔵工業大学院生,工学部土木工学専攻(〒158-8557 東京都世田谷区玉堤1-28-1) 工博,武蔵工業大学教授,工学部都市基盤工学科(〒158-8557 東京都世田谷区玉堤1-28-1)

The present paper deals with systems of seismic risk assessment for single reinforced concrete pier, and shows analytical procedures of this assessment together with numerical simulation.

Authors attempt to develop a quantitative method for the evaluation of seismic risk of the structures along with some adequate estimation accuracy. The proposal consists of three major categories; seismic hazard analysis, seismic performance assessment and seismic risk analysis. Seismic hazard of the construction site is assessed by an earthquake hazard curve using probabilistic measures. Maximum response displacement is evaluated for deterministic point of view by empirical method. Seismic risk is statistically analyzed by seismic risk curve using both data of seismic hazard analysis and seismic performance assessment. Damage cost consists of repair cost and user loss associated with the seismic damage and suspension of the service system. This case study demonstrates the proposed method can evaluate the seismic risk of the reinforced concrete piers validly. As the result, it was pointed out that the effect due to consideration of user loss is considerably large.

Key Words: reinforced concrete pier, seismic risk assessment, seismic risk curve, seismic performance level

1.まえがき

RC 橋脚の地震リスク評価においては,100 年程度の供用 期間¹⁾に対し,再現期間が1000 年単位の地震動を想定する 極めて不確実性の高いリスク分析であるといえる.そのため地 震リスク評価では,一貫して信頼性理論による確率統計論的 な評価が行われてきたが,その多くは損失額の期待値を用い たリスク評価である(例えば文献^{2),3)}).損失額の期待値はリス ク情報を集約させた簡便な指標ではあるが,単一の数値によ リ示されるためリスクの特性を表現することができない.一方,本 論で使用するリスクカープは,損失額と超過確率の関係で表 され,リスクの全体像を表現できる利点がある.リスクカープを 利用した研究は数少なく,建築構造物に適用させた例^{4),5)}は あるが,RC 橋脚への適用例は著者らの知る限り,本研究が初 めてである.よって著者らは,RC 橋脚に潜在するリスク性状を 定量的/客観的に明らかにするための第一段階として本論を 位置付けている。

また、地震リスク分析の基幹となる耐震工学では地震動とその伝搬,構造物の応答特性,構造物の非線形挙動など多くの 異なる不確定性要因を抱えていることを考慮し,評価手法に 固有技術(解析技術)の精粗を過不足なく導入するとともに, 信頼性理論を用いて簡便で合理的な地震リスク評価手法とし たことも本論の特徴である.

2. 地震リスクマネジメントの手順

(1) RC 橋脚の地震リスクマネジメント

リスクの定義は多様であるが、文献⁶⁾によれば「リスクとは、 なんらかの原因によって被害を被る可能性」とされ、「リスクマ ネジメントとは、危機的状況が発生する前に、これらの損害の 可能性をいかに減らすか、いかにコントロールするか、を検討 し実行すること」と定義される.RC 橋脚の地震リスクマネジメン トでは、まず地震八ザードを確認した後、地震が生じた場合の シナリオを想定する(リスクの確認).次に被災時にどれくらい の被害が出るかを把握する(リスクの把握).最後にリスク減少 のための対策を実行する(リスク対策の実行)という3ステップ により構成される(図 1).本論では、リスクの低減策として橋脚 の耐震性能の向上を考え、その効果を地震リスクカープにより 定量的に表現した.

(2) RC 橋脚の地震リスク評価フロー

代表的なリスク評価手法であるリスクカーブ法⁷⁾により,地震 リスクを定量的に評価する.リスクカーブとは,横軸に損失額, 縦軸にその年超過確率をとり,分析対象のリスクを表現した曲 線である.地震リスクカーブは地震保険の設定に活用されるほ か,リスク低減策を施した際の効果を定量的に判断する基本 情報としても活用される.

地震リスク評価において,不確実性の取り扱いは重要な問 題である.本論では,主に地震動の不確実性と損失額予測の 不確実性に着目してリスク評価を進める(図2).双方の不確実 性を把握した後,両者を加味した地震リスクカープを作成する. なお,本解析で考慮している不確実性を下記に列挙し,その 対処法を示す.

> 地震発生の時系列的な不確実性 地震動強度の推定誤差 応答評価の不確実性 材料特性/構造特性の不確実性 損失額予測の不確実性

a) 地震危険度解析

建設地点を選定した後,周辺の歴史地震記録,活断層デ ータを基に地震動強度の年間超過確率を算定し,地震八ザ ード曲線を作成する().地震動強度の年超過確率を年間 発生確率に変換するとともに,ある再現期間を有する地震動 強度の推定誤差を加味し,確率分布を適用することにより不 確実性を考慮する().

b) 耐震性能評価

耐震工学の知見を生かし,基盤最大加速度が発生した時 の,RC橋脚の最大応答変位を確定論的に算出する.目標耐 震性能を決定した後,断面諸元を設定することにより,耐力, 限界状態,地震被災時の損失額を予想することができる.加 速度を基盤面から入力したときの,地盤の増幅効果,応答倍 率を考慮し,橋脚の応答加速度を推定する.地震時の損傷シ ナリオは,橋脚基部に曲げ破壊が生じるものと考え,基部の弾 塑性変形から,橋脚柱頭の応答変位を算出する.

c)地震リスク分析

耐震性能評価から算定される情報を基に不確実性を考慮 する.限界状態時の変位と応答変位の関係から限界状態発 生確率を求め,損失額の発生確率を予測する(,).損失 額には,被災による補修費および供用者の損失としてユーザ ー損失を想定した.ここで,予想した損失額にもばらつき があるものとして,確率分布を当てはめる().地震動 強度の発生確率,地震動の不確実性,損失額予測の不確実 性を考慮した地震リスクカープにより対象の保有する地 震リスクを定量的に評価する.

(3)対策によるリスク低減効果

本論では解析対象として耐震性能の異なる RC 橋脚を設定 した.耐震性能の高い橋脚ほど,耐力,変形性能が増大し損 失額が減少することが期待され,リスクカーブは左下に移動し, リスクが減少することが予想できる.しかし,軽減はするものの, リスクをゼロにすることは不可能である.リスクを許容できる範 囲であれば,リスクを保有することが合理的である.また,低頻 度であるが巨額な損失が発生してしまう場合には万が一のた めに,ある一定以上のリスクは保険などにより転嫁してしまうこ とも有効な対策である(図3).このようなリスクの保有,転嫁は 本論で提案するリスク評価の次のステップとなる.

3. 地震危険度評価

(1) 地震ハザード曲線

地震ハザード曲線とは,震源距離分布及び水平最大加速 度推定式の情報を集積し,歴史地震および活断層データから 建設地点における地震動の年間超過確率を算定したもので ある.地震ハザード曲線の作成には汎用ソフト D-SEIS⁸⁾を使 用した.ハザード曲線の作成では,河角の方法を基幹としてい る.

河角の方法とは,過去の地震記録や活断層データから加速度 α の年超過確率 P(α)を算定するものである.抽出期間 T_D 年間の地震情報を採取し,加速度 α 以上の地震の発生回数を n(α)とすれば,年平均地震発生回数を抽出期間で除した値 n(α)/T_Dは,T_D年間での年平均地震発生回数となる.年平均地震発生回数が将来(T_D年間中)でも同様の回数発生するポアソン過程が成立すると仮定すれば,{n(α)/T_D}×T は式(1)に示す,将来T年間での平均発生回数N(α ,T)となる.

$$N(\alpha, T) = \frac{n(\alpha)}{T_D} \cdot T \tag{1}$$

N(α , T)=1のとき, T年間で平均して α 以上の地震の発生す る回数は, 1回である.ここでTを平均再現期間と定義する.こ の関係を, 平均してT年の再現期間をもつ地震動強度が α 以 上であると解釈し, N(α , T)=1 が成立するような加速度 α を順 じ算定することで, 平均再現期間Tと加速度 α の関係を表現す ることができる. 平均再現期間と年超過確率は式(2)のように 逆数関係にあることから, 加速度と年超過確率関係を示す地 震八ザード曲線を作成することができる.

$$P(\alpha) = \frac{1}{T(\alpha)} \tag{2}$$

図 4 に一例として,神戸市庁舎付近における地震ハザード 曲線⁹⁾を示す.

(2) 地震動の不確実性

地震動の不確実性として,距離減衰式による基盤最大加速 度αの推定誤差を考える.式(3)のように距離減衰式は,推定 式そのものが対数形¹⁰⁾をしているため,地震動強度αに確率 分布を適用する場合には対数正規分布が適当とされている. a, b, c は回帰係数であり,多くの研究者がこの回帰式をもとに 地震データを集約して距離減衰式の提案を行っている.

$$\log \alpha = a \cdot M - b \cdot \log x + c \tag{3}$$

また, Campbell¹¹⁾は, 観測データからも対数正規分布を採用している.本論においても地震動強度 α の平均値と標準偏差 α_m, σ_a とし, lnXの平均値 λ_a と標準偏差 ζ_a をパラメータとする対数正規分布でモデル化した.確率密度関数を $h(\alpha; \lambda_a)$

 ζ_{α})と表記し,式(4)に示す.また λ_{α} 、 ζ_{α} は,式(5),(6)により α_{m} 、 σ_{α} と関係付けられている.

$$h(\alpha;\lambda_{\alpha},\zeta_{\alpha}) = \frac{1}{\sqrt{2\pi\zeta_{\alpha}\alpha}} \exp\left\{-\frac{1}{2}\left(\frac{\ln\alpha - \lambda_{\alpha}}{\zeta_{\alpha}}\right)^{2}\right\} (4)$$

ここで、

$$\lambda_{\alpha} = \ln \alpha_m - \frac{1}{2} \zeta_{\alpha}^{\ 2} \tag{5}$$

$$\zeta_{\alpha} = \sqrt{\ln\left(1 + \frac{\sigma_{\alpha}^{2}}{\alpha_{m}^{2}}\right)} \tag{6}$$

図 5 に地震ハザード曲線から得られる基盤最大加速度α_m に対数正規分布によりモデル化された基盤最大加速度αの不 確実性を模式的に併記した.

式(7)に示すとおり,地震八ザード曲線の年超過確率 P (α_m)を地震動強度 α_m で微分することで地震動強度の発生確 率密度関数 $p(\alpha_m)$ に変換することができる.

$$p(\alpha_m) = -\frac{dP(\alpha_m)}{d\alpha_m} \tag{7}$$

4. 耐震性能評価

(1)構造物の耐震性能¹²⁾

鉄道構造物等設計標準・同解説(耐震設計)¹²⁾では,構造物の耐震性能は,主に地震後の構造物の復旧難易性に対する性能であるとし,3区分されている.

耐震性能 は,地震後の構造物の損傷が十分に小さい範 囲に留まっている状態とする性能であり,構造物は耐荷力等 に対する補修を行わず供用することを想定しているものであ る.

耐震性能 は,地震後に構造物の機能が短時間で回復で きる状態とする性能であり,補修に困難が伴う構造物の残留 変形や部材の損傷が許容限度内にある状態とする性能である. また,この性能は構造物全体の崩壊に対して余裕をもたせる 性能である.構造物の残留変位の制限が必要な場合は,適切 な方法により算定し,設定した許容限度内にあることを確認す る必要がある.

耐震性能 は,地震後に構造物が修復不可能になったとしても,構造物の重量および負載重量,土圧,水圧などにより, 構造物全体は崩壊しない状態とする性能である.

耐震性能の照査は,設計地震動に応じて構造物が所要の 耐震性能を満足することを照査する.

土木学会

(2)損傷レベル¹²⁾

RC 橋脚の地震時損傷を橋脚基部の曲げ破壊のみに限定 し,非線形特性をテトラリニア型の骨格曲線でモデル化した. 損傷レベルは,橋脚の復元力モデルと関連付けられている. RC 橋脚の限界状態として,基部のひび割れ発生時 C,主鉄 筋の降伏時 Y,最大耐力時 M,降伏荷重を維持できる最大変 位点 Nの4境界が定義されている.これらY点,M点,N点の 限界状態を境に,損傷レベルは4 区分に設定されている(図 6).図中のδ_{resp.}は,任意荷重に対する最大応答変位である.

(3)損失額の予測

損傷レベルを i, アイテム番号を j と定義する. アイテム番号 は損失の種類を表し, 物的損失やユーザー損失などがこれに あたる. 損傷レベル, アイテム番号と損失額の対応をマトリクス 表示した(表1). 損傷レベル i 発生時のアイテム番号 j の損失 額を *c*_j と表現する. なお損傷レベル i 発生時の損失額は, アイ テム j の総和(j=1~m)をとることで算出できる. 算定式を式(8) に示す.

$$c_i = \sum_{j}^{m} c_{ij} \tag{8}$$

なお,本論では補修費とユーザー損失の2種類の損失を考慮して解析を行っている.補修費は,損傷レベルにより異なると考えられる.被災による補修工法は,損傷レベルにより分別されているため(表 $2^{(2)}$),補修費を損傷レベル別に一定値と仮定した.ユーザー損失においても,補修による機能停止時間は,損傷レベルに起因するので,損失額を損傷レベル別に対応させた.なお最大損失額 c_{max} は,損傷レベル4の損失額 c_a であるとしている.

表1 損失額マトリクス

i	1:補修費	2:営業損失	3:ユーザー損失	
1:損傷レベル 1	C 11	C 12	C 13	$c_1 = \sum_{j=1}^{3} c_{1j}$
2:損傷レベル 2	C 21	C 22	C 23	$c_2 = \sum_{j=1}^{3} c_{2j}$
3:損傷レベル 3	C 31	C 32	C 33	$c_3 = \sum_{j=1}^{3} c_{3j}$
4:損傷レベル 4	C 41	C 42	C 43	$c_4 = \sum_{j=1}^3 c_{4_j}$

損傷レベル	損傷状況	補修工法の例		
損傷レベル1	無損傷	無補修(必要により耐久性上の配慮)		
損傷レベル2	場合によっては補修が必要な損傷	必要によりひび割れ注入・断面修復		
損傷レベル 3	補修が必要な損傷	ひび割れ注入・断面修復 必要により帯鉄筋等を整正		
損傷レベル4	補修が必要な損傷で,場合によって は,部材の取替えが必要な損傷	ひび割れ注入・断面修復・帯鉄筋等の整正 軸方向鉄筋の座屈が著しい場合は,部材の取り替え		

表2 RC 部材の損傷レベルと損傷状況,補修工法¹²⁾

本論では,神田らが提案する基盤最大加速度αと構造物の 平均応答スペクトル値α_cの関係式¹³⁾を採用した.式(9)は, 基盤最大加速度αを入力値とし, 種地盤の非線形動的解析 を介して構造物の弾性応答(応答スペクトル)を出力とした数 値解析による回帰式である.減衰定数は 5%,加速度応答ス ペクトルにおける構造物の固有周期は 0.28~0.56sec.付近の 平均応答スペクトル値α_cを採用している.

$$\alpha_{c} = 19.44 \alpha^{0.6523} \tag{9}$$

基盤最大加速度αに対して地盤が線形応答する場合には, 構造物の応答値は図7中の破線のようになるが,式(9)は,地 盤の非線形応答を反映しているためα_cは線形増加をせず,概 ねα_c=2~3αの倍率に推移しているのが特徴的である.

(5) 弾塑性最大応答变位

最大荷重 Q_E と弾性最大応答変位 δ_E , 弾塑性最大応答変位 $\delta_{resp.}$ の関係は図 8 のように表される. 弾性域内でのポテンシャ ルエネルギー(AOD の面積)と, 塑性域内のポテンシャルエ ネルギー(CBOD の面積)が等価であるという仮定(エネル ギーー定則)に基づき, 弾塑性系の最大応答変位 $\delta_{resp.}$ を式 (10)により簡易的に算出することができる. 荷重低減係数 R を 式(11)に示す. R は, 弾性最大荷重 Q_E と降伏荷重 Q_Y の比, または最大加速度 α_c と降伏加速度 α_Y の比で表現される.

$$\delta_{resp.} = \frac{1}{2} \left(R^2 + 1 \right) \delta_Y \tag{10}$$
$$R = \frac{Q_E}{Q_E} = \frac{\alpha_c}{Q_E} \tag{11}$$

5. 地震リスク分析

(1)損傷レベル発生確率

応答変位 δ_R ,限界状態時の変位 δ_K が確率変数であるとき, 性能関数を X= δ_K / δ_R と定義すると, δ_R が δ_K を超過する確率 (限界状態発生確率) F_K は,X 1 が生起する確率であり式 (12),(13)により求まる.

$$X = \frac{\delta_K}{\delta_R} \tag{12}$$

$$F_{\kappa} = Prob(X \le 1) \tag{13}$$

応答変位や限界状態時の変位のばらつきは,通常,対数 正規分布でモデル化されることが多い(図 9).

確率変数 δ_R , δ_K が対数正規分布に従うとき, X もこれに準じるため,限界状態発生確率 F_K は,式(14)により求まる.ここで δ_R , δ_K の平均値,変動係数を $\delta_{resp.}$, δ_k , v_R , v_K とすると, lnXの平均値,標準偏差, λ_X , ζ_X は,式(15),(16)により算出される.

$$F_{K} = \int_{0}^{1} \frac{1}{\sqrt{2\pi}\zeta_{X}x} \exp\left\{-\frac{1}{2}\left(\frac{\ln x - \lambda_{X}}{\zeta_{X}}\right)^{2}\right\} dx \quad (14)$$

ここで,

$$\lambda_{X} = \ln \delta_{k} - \ln \delta_{resp.} \tag{15}$$

$$\zeta_{X} = \sqrt{\ln\left((1 + \nu_{K}^{2})(1 + \nu_{R}^{2})\right)}$$
(16)

積分関数を $z=\delta_{resp.}$ 'x として z を変数変換すると, F_K は式 (17)により求まる.これは,応答変位の平均値 $\delta_{resp.}$ が与えられた時の条件付限界状態発生確率 $F_k(\delta_{resp})$ を表わす.

$$F_{k}(\delta_{resp.}) = \int_{0}^{\delta_{resp.}} \frac{1}{\sqrt{2\pi\varsigma_{X}z}} \exp\left[-\frac{1}{2}\left(\frac{\ln z - \ln \delta_{k}}{\varsigma_{X}}\right)^{2}\right] dz \quad (17)$$

 $\delta_{resp.}$ を変数として 0~ まで変化させると, 応答変位 $\delta_{resp.}$ に 対応した限界状態発生確率を与える地震損傷度曲線¹⁴⁾ (Fragility Curve)が得られる.限界状態時の変位 δ_k を主鉄筋 の降伏時 δ_y ,最大耐力時 δ_m ,降伏荷重維持時 δ_n の変位と設 定することで,各限界状態の条件付発生確率 $F_{Y,} F_{M,} F_{N,}$ が求 まる.なお,応答変位 δ_{resp} は加速度 α より算定されるため,以降, 限界状態発生確率を $F_k(\alpha)$ と記述する. $F_k(\alpha)$ は,限界状態 k の超過確率であるため,限界状態間の範囲,つまり損傷レベ ルの発生確率 Prob. ($c_i | \alpha$)は,式(18)~(21)により算出するこ とができる(図 10).

$$Prob.(c_1 \mid \alpha) = 1 - F_Y(\alpha)$$
(18)

$$Prob.(c_2 \mid \alpha) = F_Y(\alpha) - F_M(\alpha)$$
(19)

$$Prob.(c_3 \mid \alpha) = F_M(\alpha) - F_N(\alpha)$$
(20)

$$Prob.(c_4 \mid \alpha) = F_N(\alpha)$$
(21)

任意の加速度 α に対して,応答変位 $\delta_{resp.}$ が求まり,そのばら つきを考慮することで限界状態発生確率 $F_K(\alpha)$ を算定し,損 傷レベル発生確率 $Prob.(c_i|\alpha)$ へ変換する.なお,損傷レベル の発生確率は,互いに排反事象であるため,その総和は 1 と なる(式(22)).

$$\sum_{i=1}^{4} Prob.(c_i \mid \alpha) = 1$$
(22)

(2) Event Tree Analysis

本論におけるイベントツリーを図 11 のように設定した.RC 橋 脚の地震時損傷イベントを橋脚基部の曲げ破壊のみに限定 すると,被害形態は損傷レベル 1, 2, 3, 4 に対応させることが できる.Fragility Curveの限界状態発生確率 $F_k(\alpha)$ から,損傷 レベル発生確率 Prob. $(c_i|\alpha)$ を算出し,損失額 c_i との関係から, 式(23),(24)により損失額の期待値 c_m と分散 σ_c^2 を算定する.

$$c_m = \sum_{\substack{i=1\\n}}^{n} c_i \cdot Prob.(c_i \mid \alpha)$$
(23)

$$\sigma_c^2 = \sum_{i=1}^n (c_i - c_m)^2 \cdot Prob.(c_i \mid \alpha)$$
(24)

なお,期待値 c_m は NEL(*Normal Expected Loss*)とも呼ばれ, 任意の加速度 α を条件とした損失額の期待値である.本論で は以降, NELを C_{NEL} と表し,損失額の期待値を表現する.

被害要	要因(曲	げ破壊)	発生確率	損失額	
地震動強度 αGal の発生	T	Prob. (c ₁ α) c ₁	(損傷レベル1)	
		Prob.($c_2 \mid \alpha$) c ₂	(損傷レベル2)	
			Prob.($c_3 \alpha$) C ₃	(損傷レベル3)
			Prob. ($c_4 \mid \alpha$) c ₄	(損傷レベル4)
			Prob. ($c_i \alpha$) =1	
		図 11 3	本論における	イベン	<u>- ッリー</u>

(3) Probability Mass Function

損失額 c_i と発生確率 Prob. $(c_i|\alpha)$ の関係を PMF (Probable Mass Function)で表現する. 離散的な PMFを上下限 a, b を有 する連続的なβ分布 (式(25))に適応 ^{4,5)}させることで,損失額 の不確実性を考慮する.本解析では下限値 $a \ge 0$,上限値 $b \ge c_{max}$ と設定している.式(26),(27)に示す q, r は,平均値 c_m と分散 σ_c^2 から算出される形状パラメータであり, B(q, r)はベー タ関数である.

$$f(c;q,r \mid \alpha) = \frac{1}{B(q,r)} \cdot \frac{(c-a)^{q-1}(b-c)^{r-1}}{(b-a)^{q+r-1}}$$
(25)

ここで,

$$q = \frac{c_m (c_m - c_m^2 - \sigma_c^2)}{\sigma_c^2}$$
(26)

$$r = \frac{(1 - c_m)(c_m - c_m^2 - \sigma_c^2)}{\sigma_c^2}$$
(27)

β分布への適応は FEMA も支持する結果を出している¹⁵⁾. β分布の超過確率 R(c|α)を式(28)に示す.

$$R(c \mid \alpha) = \int_{c}^{c_{\max}} f(x, r, q \mid \alpha) dx$$
(28)

(4) Probable Maximum Loss

PML(*Probable Maximum Loss*)の定義は様々であるが,本 論では,中村ら⁴⁾が提案する確率分布における90%非超過確 率時の損失額を採用した.PML を C_{PML} と表記し,式(29), (30)より算出する(図 12).

$$C_{PML} = R^{-1}(0.1) \tag{29}$$

$$R(C_{PML}) = \int_{C_{PML}}^{c_{max}} f(x \mid \alpha) dx \qquad (30)$$

90%の由来は、「建物の10棟中1棟は不適切な設計,施工 の特異性,異常な地震動や応答,地盤被害などを原因とした 例外的な損失を持ち,建物の一般的な階級がうまく適合しな い」ことに起因している.すなわち不適切な設計や異常な地震 動等が原因で 10%の確率で予想損失額を超える可能性があ ることを示唆している¹⁶⁾.図 13 に小規模地震動(100Gal)と中 規模地震動(600Gal)発生時の NEL, PML, PMF, 確率密度 関数 *p. d. f.*の模式図を示した.地震動強度が増加すると高額 の損失額の発生確率が向上し、これにしたがい NEL, PML が 最大損失額方向へシフトする.

(5)損失関数

図 14 は,加速度αを条件とした NEL, PML の曲線を表わし たものであり,損失関数(Damage Function)と呼ばれている⁴⁾. 損失関数により,任意の地震動強度により対象が被る損失額 (NEL, PML)を直接把握できるため,その有用性は高い.

(6) 地震リスクカーブ

損失額 c と年超過確率 G(c)関係を表わした地震リスクカー ブにより,地震による損失の危険度を定量的に評価することが できる.まず地震ハザード曲線より,基盤最大加速度 α_m が与 えられた場合の,損失額の超過確率 $\Omega(c|\alpha_m)$ を式(31)により 算出する. $\Omega(c|\alpha_m)$ は,地震動の不確実性を考慮した損失額 の超過確率である.すべての基盤最大加速度の発生を考慮 するため $\Omega(c|\alpha_m)$ に α_m の発生確率 p(α_m)d α_m を乗じて損失額 c の超過確率 G(c)を式(32)により求める^{4),5)}.

$$\Omega(c \mid \alpha_m) = \int_0^\infty h(\alpha; \lambda_\alpha, \zeta_\alpha) \cdot R(c \mid \alpha) d\alpha \quad (31)$$
$$G(c) = \int_0^\infty p(\alpha_m) \cdot \Omega(c \mid \alpha_m) d\alpha_m \quad (32)$$

図 15 に超過確率 G(c)の算定過程を模式的に示した.これは,基盤最大加速度α,の発生確率にα,を条件とした加速度αの発生確率,さらにα条件とした損失額の超過確率算定という,重積計算を表わす.

6.RC橋脚の地震リスク評価例

(1)対象橋脚

異なる耐震性能を有する RC 単柱式橋脚,3 橋脚¹⁷⁾を解析 対象とする.TYPE1 は,安全性のみを保障する構造物であり (耐震性能),TYPE2 は,小規模地震動に対しては無損傷, 中規模地震動には復旧可能な損傷を許容した橋脚(耐震性 能).TYPE3 は,供用期間中に復旧費を必要としないことを 目標とした構造物である(耐震性能).構造物の断面形状お よび配筋状況は,上記の耐震性能を得るために TYPE1, TYPE 2, TYPE 3 の降伏時の水平震度が 0.2, 0.5, 1.5 となるよ うに設定されている.橋脚の躯体には,曲げ破壊モードとなる ように,せん断補強筋を躯体全長にわたり配筋し,躯体下端か ら躯体断面高さの 2 倍の範囲には,変形性能を確保するため のせん断補強筋が配置されている.

橋脚断面の配筋状況を図 16 に, 非線形特性を図 17 に示 す. 各橋脚は, 目標耐震性能を達成するために, 異なる荷重 変位関係を有しているのがわかる. 耐震性能は, 式(11)の荷 重低減定数 R と等価である換算弾性水平震度 0.3, 1.0, 1.5 を 対象橋脚に作用させたとき, 式(10)により応答変位δ_{resp} がどの 損傷レベルに属するかを確認することで, 照査を行っている ¹⁷⁾. 変動係数 ν_K, ν_R はリスクカープに対して大きな感度を持つ ことが確認されているため, 慎重に選定する必要がある¹⁸⁾. 本 論では,応答変位および限界状態変位の変動係数を $\nu_{k=0.3}$, $\nu_{k}=0.3$ とした.損傷レベルと補修費,ユーザー損失の 対応を表3に示す. 杉本ら¹⁹⁾によると一日あたりのユーザー損 失は,交通量が多い場合で500万円/日とされている.本論で は,500万円/日に橋脚の機能停止期間(日)を乗じた損失額 をユーザー損失として採用している.被災時の機能停止期間 は,損傷レベル2では7日間,損傷レベル3,4では,30日の 通行止めの必要性があるとされている¹⁷⁾.

(2) 対象地点

対象地点を東京都新宿区(35.7075N, 139.6891E)としたとき の地震ハザード曲線を図 18 に示す.距離減衰式には式(33), (34)に示される福島・田中式を選定した.M はマグニチュード, r は震源距離である.

$$\alpha_{\rm m} = 10^x \tag{33}$$

 $x = 0.51M - \log(r + 0.006 \cdot 10^{0.51M}) - 0.0034r + 0.59 \quad (34)$

加速度α_mの増加に伴い年超過確率が減少,再現期間が長期化していることがわかる.また,図 19 に地震動強度の不確 実性を対数正規分布でモデル化したグラフを示す.加速度の 変動係数を一定値とすることで,加速度の増加に伴い不確実 性が増大するという距離減衰式による加速度の推定誤差の特 徴に合致したモデルにすることができる.

(2) Fragility Curve~損失関数

図 20 は TYPE2 橋脚において,式(14)で算定される
 Fragility Curve の限界状態発生確率から式(23)で求める損失
 関数までの一連の解析結果をまとめたものである.

a) Fragility Curve (\boxtimes (a))

Fragility Curve では, 主鉄筋が降伏する確率 F_Y は, 基盤最 大加速度 100Gal 付近から急激に上昇している. 300Gal 程度 の地震動が発生した場合は, 主鉄筋は, ほぼ確実に降伏する ことを示している. 最大耐力時, 降伏荷重維持時の発生確率 F_M , F_N は, 荷重変位関係の限界状態変位 δ_M , δ_N が近接してい ることを反映して発生確率は同程度の値を示し, 1000Gal の地 震動が発生すると 0.9 弱の確率で生起することがわかる.

b)損傷レベル発生確率(図(b))

損傷レベル発生確率 $P(c_i|\alpha)$ は,加速度 α が増大するに従い, 高次の損傷レベルが発生しやすくなっている.微小な加速度 では無被害(損傷レベル1)の可能性が高く,400Gal付近では, 損傷レベル2が卓越している.500Gal程度の加速度から損傷 レベル3,4の発生確率がほぼ同時に上昇する.これは損傷レ ベル3,4の近接する F_M , F_N を反映した結果である.加速度を 増大させると損傷レベル3が発生した直後に損傷レベル4に 移行するため,損傷レベル3に比べ損傷レベル4の発生確率 が支配的になる.

c)損失額(図(c))

損失額 c_iは,損傷レベル別に設定されているが,任意の加速度αに対して全ての損傷レベルの発生する確率が考えられるのは,前述のとおりである.加速度αを変数変換した時の損失額 c を破線で示した.

d)損失額リスク(図(d))

損傷レベルにおける損失額 c_i とその発生確率 $P(c_i|\alpha)$ を乗じて損失額リスク $P(c_i|\alpha) \cdot c_i$ を算出する. 各損傷レベルの損失額と発生確率の値により損失額リスクが増減する. 加速度 α による各損傷レベルの損失額 c_i と発生確率 $P(c_i|\alpha)$ より, 損失関数を作成する.

e)損失関数(図(e))

NEL と PML の損失関数を示す.NEL は,加速度に対して 非線形に増加する単調増加関数である.しかし,PML の損失 関数は加速度の増加に伴わず減少する場合がある.これは, PML が損害額のばらつきを考慮した統計値であるため,損失 額の標準偏差σ_c(グラフ内破線)が減少するとβ分布の尖度が 増加し NEL に接近する性質を表した結果である.本設定条件 での NEL の特徴として,300Gal ~500Gal の基盤最大加速度 が発生しても損傷レベル3,4が生起しにくいため,損失額の増 加が微小であることが特徴的である.また,1000Gal の地震に 対しては最大損失額に近い損失が生じるという結果となった.

(3)損失関数

損失関数を図 21 に示す.基盤最大加速度αの増大にした がい損失関数は上昇する傾向にある.耐震性能の低い橋脚 ほど低い加速度で崩壊しやすく,損失額が早期に頭打ちにな ることがわかる.

a) 補修費 (図(a))

TYPE1, TYPE2, TYPE3 橋脚における最大損失額 c_{max1}, c_{max2}, c_{max3},の相対的な損失額の差が大きい.本算定例では 300Galの地震動でTYPE1橋脚は最大損失額に達し,700Gal の加速度を境にTYPE1とTYPE2橋脚の損失関数の大小が 逆転する結果となった.これは,耐震性能に優れる橋脚ほど 高い損失額を失う可能性があるという危険性を示唆している. b)補修費+ユーザー損失(図(b))

耐震性能に優れる TYPE3, TYPE2, TYPE1 の順に予想され る損失額が小さくなった.この要因は,各橋脚タイプの最大損 失額の差が微少となった点に帰着する.同程度の最大損失額 を有するとすれば,耐震性能の高い橋脚の方が有利であるの は明らかである。交通量がより多い区間を想定した場合には, この傾向はより顕著になる.よって,耐震性能の高い橋脚を設 定して,被災時に橋脚の機能を失わず早期に回復できるよう な設計をすることが望まれる.本解析例により,交通量の多い 区間の橋脚ほど重要度が高く,高い目標耐震性能の設定が 必要であるということを数値的に提示した.

(4) 地震リスクカーブ

地震リスクカーブを図 22 に示す.地震リスクカーブは,損失 額の増加にしたがい超過確率が減少する右下がりの曲線となる.なお,最大損失額 c_{max}での超過確率 G(c_{max})は,0となる. a)補修費(図(a))

損失額 80 万円付近で3 橋脚のリスクカーブが交差している のがわかる.損失額が低い領域では,橋脚の耐震性能を反映 して TYPE1 橋脚のリスクが最も大きく,TYPE3 橋脚のリスクが 最も低くなっている.しかし 80 万円以上の損失額で考えると, 0.5%程度の非常に低い確率ではあるが高い損失額を生じる 可能性が出てしまうことが明らかになった.低頻度で高い損失 額を有するリスクの存在が確認されると,保険などのリスクファ イナンス手法の有効性が生じてくる.このように本評価手法で 作成されたリスクカーブは,様々なリスク対策を検討する上で の有用な情報となり得る.

b)補修費+ユーザー損失(図(b))

損失額にユーザー損失も加えた場合には,耐震性能に優れる TYPE3, TYPE2, TYPE1 の順にリスクカーブがゼロに近づ きリスクが低減されているという結果になった.損失額にユー ザー損失を考慮することにより,高耐震性能橋脚が保有する 地震に対する優位性がより明らかになった.

7. 結論

本論では,図2のようにRC橋脚に対する一連のリスク評価シ ステムの構築を試みた.得られた知見を以下に示す.

- 地震リスク評価において, RC 橋脚を対象とし地震動と損 失額の不確実性を考慮した合理的な地震リスクカーブの作成手法を提案し,対象橋脚の保有する地震リスクを 定量的に評価した.
- 損失関数において, NEL は加速度の増加に伴う単調 増加関数である. PML は損失額の確率分布形状を考慮 したリスク指標であるため, 加速度が増加しても PML が 減少する場合がある.
- 補修費のみを考慮した損失関数では,各橋脚タイプの 最大損失額の相対的な差が大きいため,耐震性能に優れる橋脚ほど高い損失額を失う可能性があるという危険 性を示唆している.
- ユーザー損失を考慮した損失関数では,耐震性能に 優れる橋脚ほど損失額が小さくなった.この原因は,ユ ーザー損失が多大なため,各橋脚タイプの最大損失額 の差が減少した点に帰着する.交通量がより多い区間を 想定した場合には,この傾向はより顕著になるため,耐震 性能の高い橋脚を設定して,被災時に橋脚の機能を失 わず早期に回復できるような設計をすることが望まれる
- 補修費のみを考慮した地震リスクカーブにおいて、損失額の低い領域では耐震性能の高い橋脚ほど超過確率は減少する.しかし、低い確率ではあるが、高い損失額が新たに発生するという結果が得られた.低頻度で高い損失額を有するリスクの存在が確認されると、保険などのリスクファイナンス手法の有効性が生じてくる.このように本評価手法で作成されたリスクカーブは、様々なリスク対策を検討する上での有用な情報となり得る.
- 地震リスクカーブにユーザー損失を考慮した場合は, 耐震性能を上げるほど,リスクカーブは低減された.損 失額にユーザー損失を考慮することにより,高耐震性能 橋脚が保有する地震に対する優位性がより明らかになった.

謝辞

解析システムの構築にあたり中村孝明氏(株式会社篠塚研 究所)に提供して頂いた資料は、地震リスク分析の基幹となる 貴重な参考文献となりました。厚くお礼申し上げます.

参考文献

1)鉄道総合技術研究所:鉄道構造物等設計標準・同解説(コンクリート構造物),1999.10

2) 朱牟田善冶,石田勝彦,当麻純一:費用便益分析による変 電設備の耐震補強計画法,土木学会論文集,No.584, -42, pp215-228,1998.1

3) 星谷勝: 信頼性設計法 - 理論と考え方 - , 土質工学会, 昭 和 60 年度講演資料, 1985.7

4) 中村孝明, 中村敏治: ポートフォリオ地震予想最大損失額 (PML)評価, 日本リスク研究学会誌 12(2), pp69-76, 2000

5) 篠塚正宣,中村孝明,望月智也;極値統計理論を用いた地 震時最大予想損失額の評価手法の提案,JCOSSAR2000 論 文集,pp25-31,2000

6)草野直樹: 土木分野におけるリスクマネージメントの必要性,
 土木学会誌 Vol.85 July, pp6-8, 2000

7) 兼森孝: リスク分析, 土木学会誌 Vol.85 July, pp13-17, 2000

8) D-SEIS 使用説明書(解析プログラムバージョン 2.1),株式 会社 CRC 総合研究所

9)石川裕,奥村俊彦,亀田弘行:活断層を考慮した神戸にお ける地震危険度評価,阪神/淡路大震災に関する学術講演会 論文集,pp61-68,1996.1

10) 稲田泰夫, 猿田正明, 柴慶治ら(清水建設免制震研究 会); 耐震·免震·制震のわかる本 安震建築をめざして, 彰国 社, pp156-157, 1999

11) Campbell, K.W: Near-source Attenuation of Peak Horizontal Acceleration, Earthquake Spectra, Vol.1, pp.2039-2070,1981

12)鉄道総合技術研究所:鉄道構造物等設計標準,同解説 (耐震設計),1999.10

13) 佐藤 一郎, 平川 倫生, 神田 順: 活断層を考慮した地震 危険度解析と最適信頼性への応用, 第10回日本地震工学シ ンポジウム,pp.145-160,

14)水谷守,中村孝明,下野正人,亀村勝美:確率論的アプロ ーチによる地震リスクマネジメント(SRM)手法の提案,土木学 会第51回年次学術講演会 -B369,1996.9 15) Federal Emergency Management Agency ; Earthquake Damage Evaluation Data for California, ATC-13, p492, 1985

16) Steinbrugge, Karl V.; Earthquakes, Vocanoes, and Thunamies, An Anatomy of Hazards , pp.201-216 , 1982

17) 玉井真一, 笹谷輝勝, 渡辺忠朋: コンクリート構造物の耐 震性能とライフサイクルコスト, コンクリート技術シリーズ コンク リート構造物の耐震性能照査, 社団法人土木学会, pp179-202, 2000.4 18) 遠藤昭彦: 鉄筋コンクリート橋脚に対する地震リスク評価手 法の適用, 武蔵工業大学土木工学科修士学位論文, 2002.3