腐食環境下にある鉄筋コンクリート橋脚の地震リスクと損傷期待値

Seismic Risk and Expected Damage Index of Reinforced Concrete Structures under Corrosion Environment

吉川弘道^{*}·劉汝剛^{**}·磯部正太^{***}·中公雄介^{**} Hiromichi YOSHIKAWA, Rugang LIU, Shota ISOBE and Yusuke NAKAKO

*正会員 工博 武蔵工業大学教授 工学部 都市基盤工学科 (〒158-0087 東京都世田谷区玉堤 1-28-1) **学生会員 工修 武蔵工業大学大学院 工学研究科 都市基盤工学専攻 (〒158-0087 東京都世田谷区玉堤 1-28-1) ***学生会員 武蔵工業大学 工学部 都市基盤工学科 (〒158-0087 東京都世田谷区玉堤 1-28-1)

In the present paper, combining the earthquake resistance and the durability of reinforced concrete, the expected damage of a structure by earthquake is examined for reinforced concrete under continuous corrosion environment. Particularly, here in this study, RC bridge piers failed in flexure are dealt with and damage index initially proposed by Park et al. is introduced to assess the seismic damage during the strong motions. Moreover, some conventional techniques are made use of in this study, such as seismic hazard curves, expected seismic risk, and corrosion models for reinforcing bars in concrete structures and deteriorated model of reinforced concrete members.

It is exammined by means of numerical demonstrations that the seismic damage risk of RC model piers with/without corrosion of reinforcement is increased in the time and how the earthquake resistance and the durability ability are related.

Key Words: reinforced concrete structure, corrosion environment, damage index, seismic hazard curve, seismic risk

1. はじめに

鉄筋コンクリート(以降, RC)構造物は,極めて耐久性に 富み,供用後メンテナンスフリーであると考えられてきた.し かしながら,近年,塩害,凍害,疲労などに起因する早期劣 化が顕在化し,既設構造物の構造診断が重要となっている. 一方,現在,RC構造物の設計は仕様規定型から性能照査 型への過渡期にあると同時に,設計の重点も新設に関する 設計から,既存構造物の保守へと移行しつつある.このよう な背景のもと,本研究は,経年劣化として,鉄筋の腐食環境 を採り上げ,鉄筋コンクリート橋脚を対象とした地震リスクに ついて考察するものである.

本研究室では, RC 構造物の耐震性能照査として,供用 期間において遭遇するであろう想定地震動強度を設定し, RC 構造物の損傷度期待値推定法を提唱してきた¹⁾.本 文では,さらに,腐食環境下にある RC 構造物の鉄筋腐食 による耐力低下を推定し,経年的な劣化を考慮しようとする ものである.

すなわち,鉄筋コンクリート橋脚(以降, RC 橋脚)を対象 とし,耐震性能と耐久性能の両者を統合して扱い,より合理 的な性能設計法を構築するために,経年劣化と耐震性能の 関係を明らかにし,劣化を考慮した構造物地震時損傷度期 待値を算定するものである. 本研究の解析手順は,次の4つの Phase で構成される.

Phase : 地震規模の評価

地震危険度解析は、「将来の一定期間において,着目地 点周辺で発生すると予測される地震動について,その諸性 質を定量的に予測・評価する」と定義される、本文では,地 震時の最大加速度を横軸とする地震ハザード曲線を用い, 建設地点の地震特性を表現するものである.

Phase : RC 橋脚の耐震性能評価

RC 橋脚を対象とし,基盤最大加速度に対する最大応答 変位を確定論的に算出する.加速度を基盤面から入力した ときの,地盤の増幅効果と応答倍率を簡易的に考慮し,RC 橋脚の応答加速度を推定する.その応答加速度を用いて 弾塑性評価式より応答変位を算出する.損傷状態の評価は, 応答最大変位を用いた評価式により算出される,損傷度指 標(Damage Index DI)から評価する.

Phase : 腐食による RC 橋脚の耐力低下モデル

RC 橋脚の塩害は,コンクリート中に塩化物イオンが浸透 し,その塩化物イオンが鉄筋位置で限界塩化物イオン濃度 に達することにより開始する.その後鉄筋腐食が持続するこ とにより,鉄筋断面積が減少し,耐力/剛性の低下が励起

 $[\]P\,$ Dedicated to the memory of Prof. Michihiro KITAHARA

される.これを単純なモデルに置き換え,変形挙動(P δ関係)として表現する.

Phase : RC 橋脚の地震リスク

以上の各Phaseでの出力を統合して, RC 橋脚の地震リ スクを算定する.損傷度期待値は,様々なレベルの地震動 が地震ハザード曲線に示される確率で発生し,構造物は Damage Index curve で示される損傷を受けるとしたうえで, すべての地震動の発生を考慮した場合の Damage Index 期 待値である.本研究は腐食により経年劣化を考慮した地震 時損傷度期待値を算出する.

本研究の構成として, Phase ~ の流れとして, フロー チャート(図 - 1), および相関図(図 - 2) に示した.

2. 地震ハザード曲線と地震リスク: Phase &

2.1 建設地点の地震ハザード曲線

地震ハザード曲線は,震源距離分布及び水平最大加速 度推定式の情報を集積し,歴史地震および活断層データ から建設地点における地震動の年超過確率を算定したもの である.

本文は,河角の方法により地震ハザード曲線を作成する (これは,過去の地震記録や活断層データから地盤最大加 速度(PGA.) α の年超過確率P(α)を算定するものである³). 地震歴の抽出期間 T_E 年間の地震情報から,最大加速度 α 以上の地震の発生回数を n(α)とすれば,地震発生回数を 抽出期間で除した値 n(α)/T_E は,T_E 年間での年平均地震 発生回数となる.地震発生特性として,ポアソン過程の成立 を仮定すると,T 年間での平均発生回数 N(α ,T)は,次式 となる.

$$N(\alpha, T) = \frac{n(\alpha)}{T_E} \cdot T \tag{1}$$

ここで,期間Tは再現期間として定義される.

この関係を,平均してT年の再現期間をもつ地震動強度 が α 以上であると考え,N(α ,T)=1が成立するような加速度 α を順じ算定することで,平均再現期間Tと加速度 α の関係を 表現することができる.平均再現期間と年超過確率は式(2) のように逆数関係にあることから,

$$P(\alpha) = \frac{1}{T(\alpha)} \tag{2}$$

最大加速度と年超過確率関係を示す地震ハザード曲線を 作成することができる.

本文では,地震危険度解析プログラム ⁴を採用し,表 - 1 に示す7箇所の建設地点を想定し,地震八ザード曲線を算 出した.一例として,図 - 3(a)に,供用期間1年間における3 地点の地震八ザード曲線を示した.

建設地点	Latitude	Longitude
札幌市	43.1366N	141.3550E
仙台市	38.2633N	140.9327E
新宿区	35.7075N	139.6891E
名古屋市	35.0602N	136.9766E
福井市	36.0413N	136.2308E
神戸市	34.6866N	135.1611E
福岡市	33.5936N	130.4008E

表 - 1 建設地点データ

2.2 供用期間の地震動設定

年超過発生確率 $P_1(\alpha)$ を表現する地震ハザード曲線を設定すると,今度は供用年間 t 年間における超過確率 $P_t(\alpha)$ が,式(3)より与えられる.

$$P_t(\alpha) = 1 - \left[1 - P_1(\alpha)\right]^t \tag{3}$$

さらに,東京都新宿区における t = 20 年, 30 年, 50 年の地 震八ザード曲線を図 - 3(b)に示す.

凶-5 泥炭パッ 一山泳の町井

2.3 損傷度期待値の算定

次に,地震ハザード曲線の超過確率 $P_1(\alpha)$ を,最大加速度(P.G.A.) α で微分することにより,最大加速度の発生確率密度関数 $p_1(\alpha)$ に変換することができる.すなわち,

$$p_t(\alpha) = -\frac{d}{d\alpha} P_t(\alpha) \tag{4}$$

ここで,損傷の程度を表す Damage Index DI を導入し,地 震損傷のリスクを算定する.これは,PGA. α の発生確率密 度関数 $p_i(\alpha)$ と Damage Index DI との積により,構造物の年 間地震リスク(年損傷度期待値密度) $ed_1(\alpha)$ として求めること ができる.すなわち,

$$ed_1(\alpha) = DI(\alpha) \cdot p_1(\alpha) \tag{5}$$

ここで, Damage Index DIは,本文の対象構造物であるRC 橋脚に対するもので算定法を次章にて詳述する.式(5)を用 いて, P.G.A.αをパラメーターとする年損傷度期待値密度曲 線を作成することができる.

今度は,年損傷度期待値密度曲線を P.G.A.α全域にて積 分することにより,年損傷度期待値 ED₁を算定することがで きる.すなわち,式(6)より求められる.

$$ED_{1} = \int_{0}^{+\infty} ed_{1}(\alpha)d\alpha = \int_{0}^{+\infty} DI(\alpha) \cdot p_{1}(\alpha)d\alpha \qquad (6)$$

また,t年間における地震ハザード曲線を用いることにより, 供用期間における構造物の損傷度期待値(t年損傷度期待 値)ED_tを,式(7)から求められる.

$$ED_{t} = \int_{0}^{+\infty} ed_{t}(\alpha) d\alpha = \int_{0}^{+\infty} DI(\alpha) \cdot p_{t}(\alpha) d\alpha \qquad (7)$$

本文では,上式によって与えられる,供用年間の損傷度期 待値を地震リスク²⁾と考える.

3. RC 橋脚の弾塑性応答と Damage Index

3.1 弾性応答加速度

本研究では,地震動タイプの種別として,現行の「道路橋 示方書・同解説 耐震設計編」⁵に準拠し,レベル2地震 動(タイプ ,タイプ)の考え方を用いる.また,応答特性 として,加速度応答倍率(入力地震動に対する応答加速度 値の比)を用いる.地震動タイプ とタイプ に対して,表 -2のような,応答倍率を設定した.

このような応答倍率 K_Tを用いると、次式のように、応答加速度、を簡便に算出することができる.

$$\alpha_c = K_T \times \alpha \tag{8}$$

上式のうち,入力加速度αが,地震ハザード曲線における 地盤最大加速度 P.G.A.と解釈している.

	タイプ	タイプ		
P.G.A.	約 250 ~ 350Gal	約 600 ~ 800Gal		
頻度	比較的低い	極めて低い		
継続時間	約 20 秒程度	約5秒程度		
地震例	HACHINOHE, 1968NS	JMA - KOBE, 1995NS		
応答倍率	1.4	2.5		

表-2 地震動タイプと応答倍率

3.2 弹塑性応答評価

1 質点 1 自由度の完全弾塑性系でモデル化された振動 系では,荷重低減係数 R_{μ} が多用される¹⁸⁾.荷重低減係数 R_{μ} は,応答加速度 α_{c} に対する弾性応答時の復元力 P_{E} を弾 塑性系の降伏耐力 P_{y} で除し,式(9)のように定義される(後 述の図 - 4 参照).

$$R_{\mu} = \frac{P_E}{P_y} = \frac{W}{g} \alpha_c \times \frac{1}{P_y}$$
(9)

ただし,W:重量,g:重力加速度とする.

一般に,荷重低減係数 R_{μ} を大きくすると構造物に生じる 応答塑性率 μ_{resp} は大きくなるが,この μ_{resp} が構造物の許容靭 性率 μ_{a} より小さければ,構造物の倒壊を回避することができる.

一方,弾塑性応答評価法としてエネルギー一定則を用いる.エネルギー一定則(図-4)では,弾性系でモデル化された構造物の最大応答時におけるポテンシャルエネルギー(エネルギー吸収能力)が弾塑性系のそれに等しいとする

条件より,(最大)応答塑性率 μ_{resp} を求解するものである.す なわち,三角形OAB=台形OCDEなる条件から応答塑性率 $\mu_{resp}として,式(10)を得る.$

$$\mu_{resp} = \frac{1}{2} \left(R_{\mu}^{2} + 1 \right) = \frac{1}{2} \left\{ \left(\frac{P_{E}}{P_{y}} \right)^{2} + 1 \right\}$$
(10)

なお,応答塑性率μ_{resp}から弾塑性応答変位δ_{resp}を求める場合,応答塑性率の定義から,次式にて表現される.

$$\delta_{resp} = \mu_{resp} \times \delta_y \tag{11}$$

図 - 4 ポテンシャルエネルギー一定則と弾性応答/弾塑性応答

3.3 地震時損傷度評価: Damage Index DI の算定

地震時における鉄筋コンクリートの損傷程度は,応答塑 性率 μ_{resp} (または,弾塑性応答変位 δ_{resp})そのもので,評価す ることもできるが,本文では Park らが提案した Damage Model[®]を導入し,これは,次式のように表される.

$$D = \frac{\mu_{resp}}{\mu_u} + \frac{\beta}{P_y \delta_u} \int dE$$
(12)

ここで, μ_u, μ_{resp}, dE, βは, 各々終局変位靭性率, 応答塑性 率, 履歴吸収エネルギーの増分値(累積塑性歪エネルギ ー), 非負の定数である.本モデルは, 第 1 項が(降伏域を 超える)最大変位に起因する損傷を表し, 第 2 項が繰返し 載荷の影響である.

本 Damage Model の適用に際しては, Kunnath ら⁷, 三上 ら⁸⁾によってさらなる検討がなされ, 修正式が提示されてい る. すなわち,

$$DI = \frac{\mu_{resp} - 1}{\mu_u - 1} + \frac{\beta \cdot E_h}{P_v(\delta_u - \delta_v)}$$
(13-1)

この Damage Index DI は,建築構造物のみならず, RC 橋脚にも適用されることが多く⁸⁹⁹, RC 橋脚の有用な損傷指標 となっている. さらに,上式は,次式のようにも書き換える ことができ,特に式(13-3)が簡便である.

$$DI = \frac{1}{\mu_u - 1} \left\{ \left(\mu_{resp} - 1 \right) + \frac{\beta E_h}{P_y \delta_y} \right\}$$
(13-2)

$$DI = \frac{1}{\mu_u - 1} \left\{ \left(\mu_{resp} - 1 \right) + \frac{1}{2} \beta R_{\mu}^{2.78} \right\}$$
(13-3)

ここで,上式を適用して,模擬 RC 橋脚(後述の表 - 4 に 示す橋脚データ)に対する,Damage Index Curve (DI)の解 析を行った.

以上までの解析手順を図 - 5 に模式的に示した.

4. 鉄筋腐食による RC 橋脚の耐力低下モデル: Phase

4.1 塩分環境下における鉄筋腐食現象

塩害劣化過程は,文献10)によれば,図-6に示すように 4つの段階にわけて,説明することができる.

それぞれの段階の特徴について以下のとおりである. .潜伏期

塩化物イオンがかぶりコンクリート中に拡散浸透し近傍に 蓄積され,鉄筋腐食が発生するまでの過程.主に,塩化物 イオンの拡散速度に支配される。

.進展期

コンクリート中で鉄筋が塩化物イオンにより腐食し始め,腐 食生成物(錆)が蓄積され,その膨張圧によってかぶりコン クリートに鉄筋軸方向のひびわれが生じるまでの過程.主 に,溶存酸素と水分の供給およびコンクリートの電気抵抗に 支配される.

.加速期

軸方向のひびわれによって,腐食速度が促進され,かぶ リコンクリートの剥離・剥落が生じる過程.支配因子は進展 期とほぼ同様であるが,荷重作用の影響も受ける,軸方向 のひびわれが生じるも静的な耐荷力はあまり低下しないと 考える.

.劣化期

鉄筋の腐食が進み,鉄筋断面積の減少が顕著となり,構造物の耐荷力の低下が明らかとなる過程.

4.2 塩化物イオン浸透性

 $ED_{i} = \int_{0}^{\infty} ed_{i}(\alpha) d\alpha = \int_{0}^{\infty} DI(\alpha) \cdot p_{i}(\alpha) d\alpha}$ 鉄筋腐食は構造物の耐久性, 耐荷性に大きな影響を与 えるが, 現状では鉄筋の腐食過程は定性的に止まり, 定量 えるが, 現状では鉄筋の腐食過程は定性的に止まり, 定量 えるが, 現状では鉄筋の腐食過程は定性的に止まり, 定量 たるが, 現状では鉄筋の腐食過程は定性的に止まり, 定量 いた調傷度期待値密度曲線 期待値算定手順 2、鉄筋位置における塩化物イオン濃度 C_dを算出するため, 土木学会コンクリート示方書¹¹⁾に準拠し, 式(14)を用いる.

$$C_{d} = v_{cl} C_{0} \left\{ 1 - erf\left(\frac{0.1 \cdot c}{2\sqrt{D_{d}t}}\right) \right\}$$
(14)

ここで,

c:かぶり(mm),t:経過時間,v_{cl}:鋼材位置における塩化物 イオン濃度の設計値C_dのばらつきを考慮した安全係数.-般に1.3,D_d:塩化物イオンに対する拡散係数(cm²/year).普 通ポルトランドセメントを使用する場合は,下式となる.

 $\log D_d = -3.9(W/C)^2 + 7.2(W/C) - 2.5$

W/C:水セメント比.今回は0.55とした

erf(s): 誤差関数. $erf(s) = \frac{2}{\pi^{1/2}} \int_0^s \exp(-\eta^2) d\eta$

一般に, C_0 は表 - 3 により決定される. このときの C_d を鋼 材腐食発生限界濃度 C_{lim} (一般に, 1.2kg/m³)に置き換える ことにより, かぶりを 30 ~ 150mm に設定したときの劣化開始 時期 t_c を算出することができる.

以上の諸式を用いて,鉄筋位置における塩化物イオン濃度 C_dを算出し,図 - 7(a),(b)に示した.図 - 7(a),では,塩化物イオン濃度 C_dを,かぶり c をパラメーター(c=20,50,100mm)とし,経過時間 t の関数として表したものである. 一方,図 - 7(b)では,塩化物イオン濃度 C_dを,海岸からの距離 d および経過時間 t との関係として図示した(図中第2象限の C₀は,塩化物イオン濃度 C_dの漸近値となっていることに注意されたい).

両図では, C_d=C_{lim}なる時間を t_cとする.t>t_cから腐食が開始・持続することを意味し,本文ではこれを劣化開始時間と呼ぶ.図-8では,この劣化開始時間とかぶりcとの関係に関して,海岸からの距離 d をパラメーターとして図化している. C_d _____

表 - 3 コンクリート表面 における塩化物イオン濃度 C₀(kg/m³)¹¹⁾

6

4.3 鉄筋腐食モデルと鉄筋腐食速度

鉄筋腐食に起因する耐荷・剛性低下を取り込み, RC 構造物の損傷程度を定量評価することを試みる.例えば, Frangopol ら¹²⁾は,図-9に示されるような均一な鉄筋の腐 食状態を想定し,供用開始後における鉄筋断面積として次 式を提示している.これは,文献 12)を参照して,Frangopol らによる提案式を下式(15),(16)のように整理する.

$$A_s = n\pi \left[D_s\right]^2 / 4 \cdots for\left(t \le t_c\right) \tag{15}$$

$$A_{s}^{*}(t) = n\pi [D_{s} - 2v(t - t_{c})]^{2} / 4 \cdots for(t > t_{c})$$
(16)

ここで, Ds, n:軸方向鉄筋の径,本数.As, A*s:鉄筋の断 面積.v:腐食速度(mm/month, inch/year).

海岸から塩化物イオンが供給される場合の鉄筋腐食過 程において,劣化期で一層鉄筋腐食が進み,鉄筋断面積 の減少が顕著となる(前出の図 - 6 参照).このため, Frangopol らの式によって鉄筋腐食モデルに沿った鉄筋腐 食率の数値的な手法の確立が求められる.本文では,参考 文献 12)にて試算されている腐食速度(corrosion rate)を参 考に,海洋環境下における腐食速度として,v=0.03 ~ 0.05mm/year を仮定する.

4.4 腐食した RC 部材の耐力評価

腐食したRC部材の曲げ耐力 M_u^* は,鉄筋量 A_s と明瞭な 因果関係があることから,曲げ耐力 M_u^* は,式(17),(18)より, 算出することができる¹³⁾.従って,曲げ耐力の算定式内鉄 筋量 A_s と引張鉄筋比 p を腐食による断面減少から求め,鉄 筋腐食後の曲げ耐力の低下を評価することができる.

$$M_{u}^{*}(t) = bd^{2}\xi pf_{y}(1 - \frac{\xi pf_{y}}{1.7 f_{c}'})$$
(17)

$$p = \frac{A_s}{bd} + \xi = \frac{A_s^*(t)}{A_s}$$
(18)

ここで, b, d, p: 長方形断面を考えたときの, 幅, 有効高 さ, 鉄筋比, f_y: 鉄筋の引張降伏強度, f'_c: コンクリートの圧 縮強度を表わす.上式(17),(18)は, いわゆる等価応力ブロ ック法による, 鉄筋コンクリートの曲げ終局耐力の算定法¹⁹⁾ に基づくものである.

このような鉄筋腐食後の耐力低下の評価モデルとして,

曲げ破壊する RC 橋脚を想定して, 図 - 10 のように組み立 てた.すなわち,式(15)と式(16)の比として表される腐食によ る断面欠損係数ξは,劣化速度νをパラメーターとして,時間 t の単一関数となる(図 - 10 下図右) .このような断面欠損 により,部材の降伏耐力 Y,最大耐力 M,終局耐力 N の 3 者を一律に欠損係数ξにより減ずるものである(図 10 上段). ただし,対応する変形量δ(図 - 10 上図の横軸)は,鉄筋腐 食による影響はないものとした.

鉄筋腐食に伴う断面欠損は,RC部材の耐荷力低下に大きな影響を与えることはよく知られているが,その力学モデルの研究は限られたものとなっている.本研究における図-10のモデル化に際しては,例えば,文献 13),14)の参考にしていることを付記する.

本モデルを再度,橋脚 A(表 - 4)に適用し,数値シミュレ ーションを実行し,その結果を図 - 11 に示す.

形式			橋脚A	橋脚B	橋脚C	橋脚D	橋脚E
ひびわれ	ひび割れ耐力(MN)	P _C	1.10	0.57	1.13	0.31	1.45
	変位(mm)	δ _C	3.50	4.70	3.80	4.30	6.9
降伏時	水平耐力(MN)	Py	3.85	1.87	3.23	2.63	4.86
	変位(mm)	δy	37.5	50.4	36.9	33.1	34.9
約日中	曲げ耐力(MN)	Pu	4.41	1.87	3.57	3.43	5.6
約回时	変位(mm)	δ _u	352.5	610.5	528.3	355.5	170
<u>終局変位靭性率(-)</u> μu		9.40	12.11	14.32	10.74	4.87	
重量(MN) W		7.36	9.32	15.3	7.52	6.35	

表 - 4 鉄筋コンクリート橋脚データ

5. RC 橋脚の地震時損傷度期待値

5.1 数値シミュレーションの実行

以上のような検討のもと,冒頭,図-1 にて呈示した解析 フローに従い,数値解析を実行し,図-12に一連の解析例 を示した.これは,供用期間50年を想定し(まずは,鉄筋腐 食を考えない場合),図(a):建設地点の地震八ザード曲線, 図(b):同密度関数,および,図(c):Damage Index Curve,を 経て,図(d):損傷度期待値密度関数の算定,に至る経過を 示したものである.言い換えると,建設サイトの地震特性と 構造物の耐震性能を,地盤最大加速度を共通変数として, 重畳したものであり,本文は,これを地震リスクの具体的な 指標としている(例えば,文献2)).

ここで,ジョブ番号を,#1,#2,#3,#4(表 - 5 に一覧 化した)として,以下のような数値シミュレーションの実施し た.解析結果を図 - 12~15 に図示したが,これらは,次の ようにまとめられる.

#1:異なる腐食環境における損傷度期待値(2 地点)(図 - 13)

腐食環境として,海岸からの距離をd=0, 0.25, 1.0kmと して,損傷度期待値 ED_tを算出したものである.タイプ 地 震動を用いているため,相当量の損傷度期待値 ED_tとなり, 腐食環境の増加とともに,これが一層助長される.

#2:地震動レベルの違いによる損傷度指標の影響(図 - 14)

ここでは,表 - 2 にて呈示した加速度応答倍率を用いて おり,タイプ 地震動では,大きな損傷度期待値 ED,が見 込まれる.横軸を地盤最大加速度としているので,建設サイ トの地震特性には因らず,橋脚の耐震性能に依存した,各 地震動レベルに対する地震動リスクである.例えば,地盤 最大加速度が α =200 Gal の場合,タイプ 地震動では, D<0.1 であるのに対して,タイプ 地震動では DI 0.3,と なっている.

ここで,これらの損傷度期待値の具体的な損傷程度(より 工学的な耐震性能)として,鈴木らによる検討結果を表 - 6 に示した(表中の Damage Index DI は,は本文で採用した 式(13)と同一のものである).これにより,橋脚の具体的な地 震損傷が推定できる. #3:腐食環境と橋脚耐震性能の違いによる影響(図 - 15)

ここでは,腐食環境の有無,および耐震性能の異なる2 橋脚について,合計4ケースの解析例を示したものである. これら2条件の違いによる損傷度期待値ED_tの変化を,時 候歴上にて判断できる.

#4: 腐食環境による橋脚の損傷度指標の影響(図 - 16)

図 - 16 では,地盤最大加速度を横軸として損傷度期待 値 ED_tを示したものである.建設サイトに影響されない,構 造物の耐震性能を示したもので,腐食環境の影響を定量的 に把握することができる.

表-5 解析条件パラメータ

	建設 サイト	地震動	橋脚 形式	海岸環境	供用 期間	腐食の 有無
#1	福井市	タイプ	D	汀線付近 250m	1~50	有,無
	神戸市			1000m		
#2		タイプ タイプ	В	250m	20	有
#3	神戸市	タイプ	C D	250m	1~50	有,無
#4	名古屋市	タイプ	E	汀線付近 250m 1000m	30	有

表 - 6 損傷度指標と損傷状態の関係⁹⁾

DI	損傷状態		
DI < 0.08	無損傷・わずかな損傷		
	耐荷に影響を及ぼさない程度の疎らなひび割れ		
0.08 < DI < 0.18	軽微な損傷		
	小さなひび割れ		
0.18 < DI < 0.36	中程度の被害(修復可能限界)		
0.18 < DI<0.30	ひび割れ,かぶりコンクリートの剥落		
0.36 < DI < 0.6	大被害		
0.30 \ DI<0.0	コンクリートの圧壞,鉄筋の座掘,変形が大きい		
	崩壊		
D1/0.0	全体的, 部分的崩壊		

6. 結語

本研究は,耐震性能として地震リスクと経年劣化による耐久性能の統合により,合理的な設計法の構築を試みるものである.

本論におけるとりまとめとして,結語を以下に示す.

1. 本研究は,鉄筋コンクリート橋脚を対象構造物とし,経 年劣化として鉄筋の腐食環境を採り上げ,地震ハザード曲 線と構造物の Damage Index との重畳による地震リスクを用 いた.

2. このため,4 つの Phase にて構成される解析フローを設定し,各 Phase の解析ルーティンを検討した.各 Phase で用 いた固有技術,知見は,

·Phase :地震ハザード曲線とその密度関数,

・Phase :応答スペクトル(道路橋示方書に準ずる応答倍率), エネルギーー定則, RC 理論, 損傷度評価式

·Phase :塩化物イオンの拡散理論とその鋼材腐食発生限 界濃度,鉄筋腐食速度則,断面欠損部材の P-δ曲線(プッシュオーバーアナリシス)

Phase :地震リスク(損傷度期待値 = 確率密度×損傷度)
 などである.

3. 構築した解析手順に従って,数値シミュレーションを実施 した.本文では,単柱式鉄筋コンクリート橋脚の損傷度期待 値を算定するため,変数として,建設サイト(全国7箇所), 地震動タイプ(2タイプ),橋脚の形式(5つのRC橋脚),海 岸環境(6ケース),供用期間(単年度,20年,30年,50年) を設定した.

4. このような数値シミュレーションを行い,損傷度(Damage Index DI)と地盤最大加速度との関係(図 - 14,16),および 損傷度期待値 ED₄と供用年数(図 - 13,15)との関係として, 図化/考察した.前者は,建設サイトの地震特性には因らず, 橋脚の構造特性に依存した,各地震動レベルに対する耐 震性能である.一方,後者のまとめ方(損傷度期待値と供用 年数との関係)は,建設サイトと橋脚の耐震性能の両者を勘 案した地震リスクである.

このような整理により,建設サイトの違い,地震動タイプ,

橋脚の構造特性,塩分環境(海岸からの距離)に関する影 響を定量的に判断することができた.

5. 本研究にて導入した固有技術/知見は,いずれも,既往 理論,または一般的な工学的手法であると言える.採用に 際しては,これらをよく吟味/構成したつもりであるが,個々 の技術の信頼度,バラツキ,などはなお不明であり,少なく とも信頼度が過不足なく,かつバランスよく用いられていると は言い難い.従って,提案する解析フローは現行のままとし, 個々の技術/算定式を最新のものにアップデートし,かつ, 信頼度の大小をバランスよく配慮することが,今後の課題と 考える.

また,現在,限界状態設計法から性能設計法への移行が 進みつつあるが(例えば,文献 20)),本論で用いた地震リ スクによる評価法は,次世代の設計法となることが期待でき る.

あとがき

本研究にて構築した一連の解析に関する,エクセルをベ ースとした,数値解析プログラムをWebにて公開しているの で,参照されたい.

『腐食環境下にある RC 構造物の地震時損傷評価システム』 http://c-pc8.civil.musashi-tech.ac.jp/RC/BACKUP/semi/semi_ a.htm

[参考文献]

- 岩本篤:鉄筋コンクリート橋脚の耐震性能評価に関する 解析手法の提案,平成11年度武蔵工業大学大学院修 士学位論文,12年3月
- 2) 例えば, Andrew Coburn, and Robin Spence: Earthquake Protection, Second Edition, 9.Earthquake Risk Modeling, JOHN WILEY & SONS, pp313-317, 2002.
- 3) 例えば, 土木学会編: 動的解析と耐震設計 [第1巻] 地 震動・動的物性, 3 章 地震危険度解析, 技報堂出版, pp29-50, 1997
- 4) 株式会社 CRC 総合研究所:D-SEIS 使用説明書(解析 プログラムバージョン 2.1)
- 5) 日本道路協会: 道路橋示方書·同解説, 耐震設計編, 1996.12.
- Park, Y.J. and Ang, A.H.S.: Mechanistic Seismic Damage Model for Reinforced Concrete, ASCE Journal of Structural Engineering, Vol.111, No.4, pp.722-739,1985.4.
- 7) Kunnath, S.K., Reinhorn, A.M. and Lobo, R.F.: A Program for the Inelastic Damage Analysis of Reinforced Concrete Structures, Tech. Report NCEER-92-0022, State University of New York at Buffalo

8) 三上卓,家村浩和:性能照査型設計のための損傷指標,

第4回地震時保有耐力法に基づく橋梁の耐震設計に関するシンポジウム講演論文集, pp17-24, 2000

- 10) 宮川豊章,小林和夫,藤井学:塩分雰囲気中における コンクリート構造物の寿命予測と耐久設計について,コ ンクリート構造物の寿命予測と耐久性設計に関するシ ンポジウム論文集,1988.
- 11) 土木学会コンクリート委員会:2002 年制定 コンクリート 標準示方書[施工編],2.3 塩化物イオンの侵入に伴う 鋼材腐食に関する照査,pp24-28,2002
- 12) Dan M. Frangopol, Kai-Yung Lin and Allen C. Estes: Reliability of Reinforced Concrete Girders under Corrosion Attack, Journal of Structural Engineering, ASCE Vol.120, No.3, pp286-297,1993.
- 13) 堤知明,海洋環境下における鉄筋コンクリート構造物 の健全度診断に関研究する,東京都立大学博士論文, 1997.2
- 14) 松島学,塩害環境下における鉄筋コンクリート構造物の耐久性設計への確率論的手法の適用に関する研究, 東京電機大学博士論文,1994.3

- 15) 土木学会地震工学委員会:橋梁の耐震設計法に関する講習会 海外から見た日本の耐震設計法 ,2.
 耐震設計のモデル化と留意事項, pp55-57, 1998.9
- 16) T. Paulay, and M.J.N. Priestley : Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley-Intercience, 1992
- 17) H. Krawinkler: Research Issues in Performance Based Seismic Engineering, Seismic Design Methodologies for the Next Generation of Codes, (Fajfar & Krawinkler, eds.), pp.47-58, Balkema, 1997
- 18) 吉川弘道, 青戸拡起, 北本廣平, 近藤由樹: RC橋 脚の非線形応答変位と荷重低減係数, p.19, 耐震設 計入門講座>電子サイバー講座>『もっと知りたい コンクリート講座』,

http://c-pc8.civil.musashi-tech.ac.jp/RC/index.htm

- 19) 吉川弘道:鉄筋コンクリートの設計,4.曲げモーメント を受ける部材,(株)丸善出版,平成9年12月
- 吉川弘道:第2版 鉄筋コンクリートの解析と設計-限界 状態設計法と性能設計-,(株丸善出版,平成16年2月 (2004年4月16日 受付)