コンクリートの性質 演習 3 (硬化コンクリート) 解答用紙

学籍番号 氏名

1. 土木練習帳

練習問題

5-1	5-2	5-3	5-5	5-6	5-7	5-9
2	b	c	d	d	c	3

2. 強度算定式

圧縮強度	割裂引張強度	曲げ強度
$f_c = \frac{4P_{\text{max}}}{\pi d^2}$	$f_t = \frac{2P_{\text{max}}}{\pi dl}$	$f_b = \frac{Pl}{bd^2}$

2. 強度

圧縮強度(N/mm²)	引張強度(N/mm²)	曲げ強度(N/mm²)
41.8	2.06	5.40

4. セメント水比説

セメントと骨材が同じであれば、コンクリートのコンシステンシーは使用水量によって決まり (単位水量一定の法則)、使用水量を一定にすると強度はセメント量によって定まる。

$$f'_{c} = A \left(\frac{C}{W}\right) + B$$

ここで、C : 単位セメント量

W : 単位水量 A,B: 定数

5. 積算温度(マチュリティ)

強度増加には、温度と材齢がともに影響する。これらをひとつの変数で評価するために、用いられる パラメータが積算温度(マチュリティ)である。

積算温度(マチュリティー) $M = \sum \Delta t_i (T_i - T_0)$

ここで、 T_i : 養生温度

 Δt_i :養生温度 T_i に保たれた期間

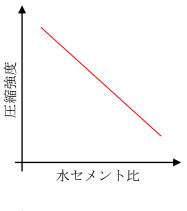
 T_0 :水和反応が進まないと考える温度(一般に、 -10°)

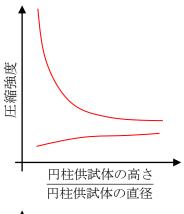
6. クリープの原因

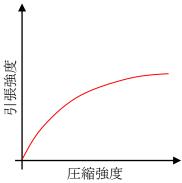
- ①セメントゲル内の水の圧水によるとする浸出説
- ②セメントペーストの粘性流動説
- ③結晶内部のすべり説
- ④引張と圧縮では機構が異なるとする説
- ⑤微細ひび割れ説

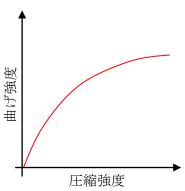
7. Davis-Granville の法則

クリープは載荷応力(静的強度の1/3以下)に比例する


8. 〇×問題


1)	2)	3)	4)	5)
×	0	×	0	×
6)	7)	8)	9)	10)
0	0	×	0	O
11)	12)	13)	14)	15)
0	×	0	×	×
16)	17)	18)	19)	20)
0	0	×	0	0
21)	22)	23)		
0	×	0		


9. 応力ひずみ関係


A	В	С	D
骨材	ペースト	モルタル	コンクリート

10. 圧縮強度に及ぼす各種要因の影響

11.

12.

13.

14.

15.

16.

17.

