
コンクリートの件質 第3回

コンクリート材料(2)

- 水
- •混和材料

【水】

練混ぜ水は、油、酸、塩類、有機不純物、懸濁物など、 コンクリートや鋼材の品質に悪影響を及ぼす物質を有 害量含んではならない。

- •水道水
- •自然水
- •回収水

表 上水道以外の水の品		
項目	品賞	
懸濁物質の量	2 g/リットル以下	
溶解性蒸発残留物の量	1 g/リットル以下	
塩化物イオン量	200ppm以下	
セメントの凝結時間の差	始発は30分以内, 終結は60分以内	
モルタルの圧縮強さの比	村齢7日および村齢28日で90%以上	

表 回収水の品質			
項目	品質		
塩化物イオン量	200ppm以下		
セメントの凝結時間の差	始発は30分以内, 終結は60分以内		
モルタルの圧縮強さの比	材齢7日および材齢28日で90%以上		

混和材料

【混和材料】

セメント、水、骨材以外の材料で、打込みを行う前までに必要 に応じてコンクリートに加える材料

混和材: 混和材料のうち、使用量が比較的多くて、その自体の 容積をコンクリートの配合設計で考慮するもの。 Ex. フライアッシュ、高炉スラグ微粉末、 シリカヒューム等

混和剤:混和材料のうち、使用量が比較的少なくて、それ自体 の容積をコンクリートの配合設計で無視するもの。

Ex. AE剤、減水剤、AE減水剤、流動化剤、 高性能減水剤、高性能AE減水剤、遅延剤、 防錆剤

【混和材】

- ・ポゾラン活性が期待できるもの →フライアッシュ、シリカヒューム
- 潜在水硬性が利用できるもの →高炉スラグ微粉末
- ・硬化過程において膨張を起こさせるもの →膨張材
- ・オートクレーブ養生によって高強度を生じさせるもの
 - →けい酸質微粉末
- ・着色させるもの →着色材
- ・流動性を高めたコンクリートの材料分離やブリーディングを減少さ せるもの →石灰石微粉末
- ・その他 →高強度用混和材、間隙充填モルタル用混和材、 ポリマー、増量材等

(1)ポゾラン

それ自体には水硬性はなく、コンクリート中の水に溶けている水酸化カルシウムと常温で徐々に化合して、不溶性の化合物を作る ようなシリカ質を含んだ微粉状態の材料

1)フライアッシュ

火力発電所で微粉炭を燃焼したときに生じる副産物

<特徴&効果>

粒子が球状。ワーカビリティーが 良くなり、使用水量を減らすこと が出来る(高強度化)。

大である。

早期強度は低いが、長期強度は

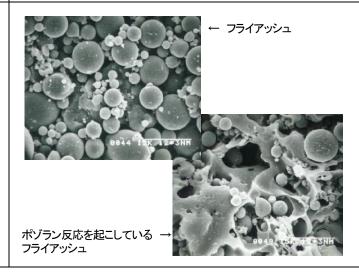


表 2.15 フライアッシュの化学成分の一例 (%)

強熱減量	SiO ₂ [†]	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO
1.2	53.3	27.2	4.4	6.3	2.0

^{*:} SiO₂ の JIS 規格値は、45% 以上である。

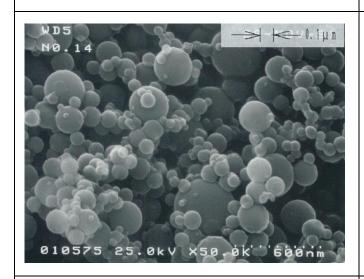
表 2.16 フライアッシュの物理的性質の一例

項目比重	比表面積 (cm²/g)	単位水量比(%)	圧縮強度比(%)		
			28 日	91 日	
試験値	2.21	3140	94	82.8	75.8
JIS 規格値	1.95 以上	2400 以上	102 以下	60 以上	70 以上

2)シリカヒューム

各種シリコン合金(フェロシリコンやメタルシリコン)を製造する 際の副産物

<特徴>


シリカ(S_iO₂)が80~95%の完全なる球状粒子。平均粒 径が0.1µ 程度(煙草の煙より細かい)。比表面積が普通 ポルトランドセメントの50~60倍(200000cm²/g)の粒径 の超微粒子

<効果>

組織の緻密化 高強度化 化学薬品抵抗性の向上

▲ヒュームド・シリカ

シリカヒュームの品質

品	質	規定値
比表面積(BET力	10以上	
活性度指数 %	材齢 7日	95以上
	材齢 28日	105以上
二酸化けい素	%	85以上
酸化マグネシウム	× %	5.0以下
三酸化硫黄	%	3.0以下
強熱減量	%	5.0以下
湿分	%	3.0以下

(2)潜在水硬性

pH12以上のアルカリ中において、固溶されていたCaO、Al2O3、 MgOなどが溶出し、カルシウムシリケート水和物(C-S-Hゲル)や カルシウムアルミネート水和物(C-A-Hゲル)を生成して硬化する 性質

1)高炉スラグ微粉末

製鉄所の溶鉱炉から排出されるスラグを水で急冷し、粒状化 したものを粉砕したもの

<特徴>

急冷するため、結晶化せず、 ガラス質となり、水和反応を 起こしやすい。

<効果>

長期強度の増加、水密性、 化学抵抗性の向上、 アルカリ骨材反応の抑制

← 高炉スラグ微粉末4000 高炉スラグ微粉末8000 →

28kU

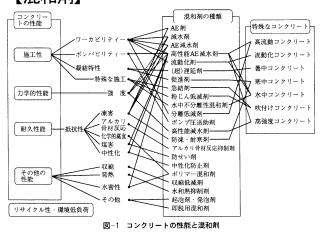

X1,000

表 2 17 高炉スラグ微粉末の品質規定 (IIS A 6206)

品質	種類	高炉スラグ微粉末 4000	高炉スラグ微粉末 6000	高炉スラグ微粉末 8000
比	重	2.80 以上	2.80 以上	2.80 以上
比表面積(c	m²/g)	3000 以上 5000 未満	5000 以上 7000 未満	7000 以上 10000 未満
活性度指数	材齢7日	55 以上 1	75 以上	95 以上
	材齢 28 日	75 以上.	95 以上	105 以上
	材齢 91 日	95 以上.	105 以上	105 以上
フロー値比	(%)	95 以上	95 以上	90 以上
酸化マグネ	シウム (%)	10.0 以下	10.0 以下	10.0 以下
三酸化いおう(%)		4.0 以下	4.0 以下	4.0 以下
強熱減量(9	%)	3.0 以下	3.0 以下	3.0 以下
Cl- イオン	(%)	0.02 以下	0.02 以下	0.02 以下

^{*:}この値は、受渡当事者間の協定によって変更できるものとする。

【混和剤】

樹脂酸ソーダ塩

アビエチン酸ソーダ塩 トリエタノールアミン

空気連行

アニオン系 (陰イオン)

(非イオン)

アルキルアリルスルホン酸塩

空気連行, 分散 (アルキルベンゼンスルホン酸塩)

リグニンスルホン酸塩

減水,分散

オキシカルボン酸塩

ポリオキシエチレン・アルキルア

リルエーテル

ポリオキシエチレングリコール・ ノニオン系 フェノールノニールエーテル

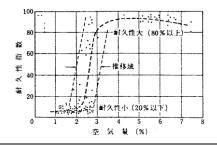
湿潤, 空気連行

脂肪酸と樹脂のポリオキシエチレ ンエステル

(1) AE剤(Air Entraining agent)

コンクリート中に独立した微小な球状の空気泡を連行し、一様に 分布させる混和剤(空気連行性)

コンクリート中の空気泡


•エントラップトエア(Entrapped air)

コンクリート中に自然に混入する不規則な形状の比較 的大きな空気泡(500µ m程度)

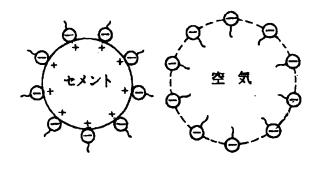
AE剤等の混和剤によって連行された空気泡 (10~100µ m程度)

AEコンクリートの特徴

- ・エントレインドエアはボールベアリングの役割をして、ワーカ ビリティー(作業のしやすさ)を向上させる。
- ・単位水量を減少できる。
- ・材料分離(骨材とペーストとの分離)を抑制
- 水密性の向上
- 耐凍害性の向上

コンクリートの空気量への影響

- ・粉体の量、あるいはセメントが細かくなると(比表面 積が大きくなる)と、空気量は減少する。
- 気泡径の大きい空気の方が散逸しやすい。
- ・細骨材の0.15~0.6mmの粒が多くなると、AE剤に よる連行空気量は増加する。
- ・コンクリートの温度が10℃上昇すると、空気量は一 般に1~2%少なくなる。
- ・ミキサによっても異なるが、練混ぜ開始後3~5分 で空気量は最大となり、その後は徐々に減少する。


(2) 減水剤(Water reducing agent)

·AE減水剤(AE water reducing agent)

セメント粒子を分散させることによって、コンクリートのワーカ ビリティーを向上させ、所定のスランプを得るのに必要な単位 水量を減少させる混和剤

アニオン基 炭素鎖

滅水率3~8%

図3・8 減水剤を用いないものはフ ロック状態に凝集している

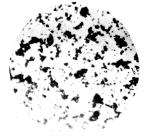
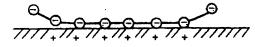


図3・9 減水剤を添加したものは よく分散している

<特徴>

・ナフタレンスルホン酸塩縮合物系とメラミンスルホン酸縮合物系

高度な減水作用により、高強度コンクリートを作る目的で使用


- ・減水率20~30%(強い静電気的な反発力)
- ・多量に使用しても、凝結や硬化を妨げない。

• 高性能減水剤(High range water reducing agent)

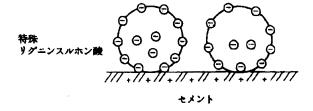
・過剰な空気連行性がない。

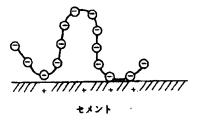
される混和剤

ナフタレン スルホン酸

セメント

セメントが塊にとならず、分散している。


•高性能AE減水剤(High range AE water reducing agent) 高い減水性能と優れたスランプ保持性能を持った混和剤



<特徴>

- ・ナフタレン系、メラミン系、ポリカルボン酸系、アミノスルホン酸系
- ・高いセメント分酸系
 - ・強い静電気的反発力 ・立体障害効果
- ・従来のAE減水剤よりも単位水量で10kg/m³以上の減水性を持
- ・優れたスランプ保持性を持つ
- ・圧縮強度で60~100N/mm²程度の高強度コンクリートが容易に 製造できる。 ・セメント量が多いほど、減水効果が大きい。

ポリカルポン酸

